

Image Classification Hands-On

Prof. Marcelo J. Rovai UNIFEI – Federal University of Itajuba, Brazil rovai@unifei.edu.br

Computer Vision Main Types

Image Classification (Multi-Class Classification)

Cat: 70%

Dog: 80%

Object Detection

Multi-Label Classification + Object Localization

Computer Vision Main Types

Image Classification (Multi-Class Classification)

Cat: 70%

Dog: 80%

Multi-Label Classification + Object Localization

Image Classification Project: Package Inspection

Deep Learning at the Edge Simplifies Package Inspection

NG

Image Classification Project

Decide a Goal

- Possible Images:
 - medicine
 - background

Image Classification Application: Design, Train, Test and Deploy

https://studio.edgeimpulse.com/public/114253/latest

Label: medicine

Label: background

Arduino CLI

ЖK

Guides > Arduino Nano 33 BLE Sense

Q Search

DOCUMENTATION **Getting Started**

API and SDK references

What is embedded ML, anyway?

Frequently asked questions

DEVELOPMENT BOARDS

Overview

ST B-L475E-IOT01A

Arduino Nano 33 BLE Sense

Eta Compute ECM3532 Al Sensor Eta Compute ECM3532 Al Vision OpenMV Cam H7 Plus

Himax WE-I Plus

Nordic Semi nRF52840 DK

Nordic Semi nRF5340 DK

SiLabs Thunderboard Sense 2

Sony's Spresense

Arduino Portenta H7 + Vision shield (preview)

Raspberry Pi 4

NVIDIA Jetson Nano

Mobile phone

Porting guide

COMMUNITY BOARDS

Seeed Wio Terminal Agora Product Development Kit

EDGE IMPULSE FOR LINUX

Edge Impulse for Linux Linux Node.js SDK Linux Go SDK Linux C++ SDK

Linux Python SDK

Arduino Nano 33 BLE Sense

The Arduino Nano 33 BLE Sense is a tiny development board with a Cortex-M4 microcontroller, motion sensors, a microphone and BLE - and it's fully supported by Edge Impulse. You'll be able to sample raw data, build models, and deploy trained machine learning models directly from the studio. It's available for around 30 USD from Arduino and a wide range of distributors.

The Edge Impulse firmware for this development board is open source and hosted on GitHub: edgeimpulse/firmware-arduinonano-33-ble-sense.

Arduino Nano 33 BLE Sense

Installing dependencies

To set this device up in Edge Impulse, you will need to install the following software:

1. Edge Impulse CLI.

2. Arduino CLI.

· Here's an instruction video for Windows.

· The Arduino website has instructions for macOS and Linux.

3. On Linux:

GNU Screen: install for example via sudo apt install screen

Note that the 1. Edge Impulse CLI is not necessary for Arduino Nano-33 if you use WebUSB.

11

× | +

docs/arduino-nano-33-ble-sense

DOCUMENTATION

Getting Started API and SDK references What is embedded ML, anyway? Frequently asked questions

DEVELOPMENT BOARDS

Overview

ST B-L475E-IOT01A

Arduino Nano 33 BLE Sense

Eta Compute ECM3532 Al Sensor Eta Compute ECM3532 AI Vision OpenMV Cam H7 Plus Himax WE-I Plus Nordic Semi nRF52840 DK Nordic Semi nRF5340 DK SiLabs Thunderboard Sense 2 Sony's Spresense Arduino Portenta H7 + Vision shield (preview) Raspberry Pi 4 NVIDIA Jetson Nano Mobile phone Porting guide COMMUNITY BOARDS

Seeed Wio Terminal

Agora Product Development Kit

	EDGE IMPULSE CLI Installation Serial dasmon Uplication Data forwarder	
	PRE-BUILT DATABETS Continuous gestures Reyword sporting Huming faucor	Arduite Nane 33 BLE Sense
Watch on 🕞 YouTube	TIPS AND TRICKS Increasing model performance Reference Reviewards	To set this device up in Edge impulse, you will need to install the following software: 1. Node js VI2 or higher.

1. Connect the development board to your computer

Use a micro-USB cable to connect the development board to your computer. Then press RESET twice to launch into the bootloader. The on-board LED should start pulsating to indicate this.

Press RESET twice quickly to launch the bootloader on the Arduino Nano 33 BLE Sense.

2. Update the firmware

The development board does not come with the right firmware yet. To update the firmware:

- 1. Download the latest Edge Impulse firmware, and unzip the file.
- 2. Open the flash script for your operating system (flash_windows.bat , flash_mac.command or flash_linux.sh) to flash the firmware.
- 3. Wait until flashing is complete, and press the RESET button once to launch the new firmware.
- 3. Setting keys

Overview

 \times +

docs/arduino-nano-33-ble-sense

Getting Started

API and SDK references

What is embedded ML, anyway?

Frequently asked questions

DEVELOPMENT BOARDS

Overview

ST B-L475E-IOT01A

Arduino Nano 33 BLE Sense

Eta Compute ECM3532 Al Sensor Eta Compute ECM3532 AI Vision OpenMV Cam H7 Plus Himax WE-I Plus

Nordic Semi nRF52840 DK

Nordic Semi nRF5340 DK

SiLabs Thunderboard Sense 2

Sony's Spresense

Arduino Portenta H7 + Vision shield (preview)

Raspberry Pi 4

NVIDIA Jetson Nano

Mobile phone

Porting guide

COMMUNITY BOARDS

Seeed Wio Terminal Agora Product Development Kit

1. Connect the development board to your computer

Use a micro-USB cable to connect the development board to your computer. Then press RESET twice to launch into the bootloader. The on-board LED should start pulsating to indicate this.

Press RESET twice quickly to launch the bootloader on the Arduino Nano 33 BLE Sense.

2. Update the firmware

1

The development board does not come with the right firmware yet. To update the firmware:

- 1. Download the latest Edge Impulse firmware, and unzip the file.
- 2. Open the flash script for your operating system (flash_windows.bat , flash_mac.command or flash_linux.sh) to flash the firmware.
- 3. Wait until flashing is complete, and press the RESET button once to launch the new firmware.
- 3. Setting keys

Windows 10

version

Prompt de Comando Microsoft Windows [versão 10.0.19041.1052] (c) Microsoft Corporation. Todos os direitos reservados. C:\Users\GUILH>arduino-cli Arduino Command Line Interface (arduino-cli). Usage: arduino-cli [command] Examples: arduino-cli <command> [flags...] Available Commands: board Arduino board commands. burn-bootloader Upload the bootloader. Arduino cache commands. cache compile Compiles Arduino sketches. completion Generates completion scripts config Arduino configuration commands. Arduino core operations. core Run as a daemon on port 50051 daemon debug Debug Arduino sketches. help Help about any command lib Arduino commands about libraries. Lists cores and libraries that can be upgraded outdated sketch Arduino CLI sketch commands. Updates the index of cores and libraries update upgrade Upgrades installed cores and libraries. upload Upload Arduino sketches.

Shows version number of Arduino CLI.

Press Nano-33 Reset button Twice With Nano-33 LED Flashing:

X

15

Windows 10

C:\WINDOWS\system32\cmd.exe	822	×
Finding Arduino Mbed core		~
arduino:mbed_nano 2.0.0 2.0.0 Arduino Mbed OS Nano Boards		
Finding Arduino Mbed core OK		
Finding Arduino Nano 33 BLE		
Finding Arduino Nano 33 BLE OK at COM11		
arduino:mbed_nano 2.0.0 2.0.0 Arduino Mbed OS Nano Boards		
Device : nRF52840-QIAA		
Version : Arduino Bootloader (SAM-BA extended) 2.0 [Arduino:IKXYZ]		
Address : 0x0		
Pages : 256		
Page Size : 4096 bytes		
Total Size : 1024KB		
Planes : 1		
Lock Regions : 0		
Locked : none		
Security : false		
Erase flash		
Done in 0.002 seconds		
Write 525440 bytes to flash (129 pages)		
[==============] 100% (129/129 pages) -> Nano 22 LED Stop Elaching		
Done in 22.296 seconds		
Flashed your Arduino Nano 33 BLE development board		
To set up your development with Edge Impulse, run 'edge-impulse-daemon'		
To run your impulse on your development board, run 'edge-impulse-run-impulse'		
Pressione qualquer tecla para continuar		

Follow this <u>video</u> to install the Arduino CLI on Windows 10 and add the 'arduino-cli' binary to your PATH. This makes the CLI available from any location through the command prompt.

Studio.edgeimpulse.com/studio/114253/acquisition/training?page=1		€	Ô	☆)		:
ecord new data						
evice ⑦						
36:17:55:F9:70:F7					~	
bel	Camera feed					
medicine	80					
Camera (128x96) ~				-		
	2	tart	sam	plin	g	
w data lick on a sample to load						
	and					2

g?page=1	8888899999999		WHITE IN	
	TRAIN / TEST SPLIT 100% / 0% 🔺		0	Record new data
				Device 🕲
		T	± 0	36:17:55:F9:70:F7
LABEL	ADDED	LENGTH		Label Camera feed
Medicine	Today, 10:43:20		1	Medicine
Medicine	Today, 10:36:16		1	Sensor MA-A-A-A
Med/cin	e Today, 10:36:01		1	Camera (128x96)
Medici	ne Today, 10:35:50		I	
Medic	ine Today, 10:35:39		1	Start sampling
Medi	icine Today, 10:35:26		1	
Me	dicine Today, 10:35:16		I	Medicine.360042rl
di Me	edicine Today, 10:34:57		1	
bh3 M	tedicine Today, 10:34:44		1	
K21p	Medicine Today, 10:34:35		1	
wisol	Medicine Today 10:34:06			
		SA	MSUNG	
		2		
		A	12	
		P		
			1	8
	10		\nearrow	
		12		
	AN ANA		$\langle \rangle \rangle$	
1		\sim		
The start		\times		
A St	\times	\times	$\langle \rangle \langle$	
	$\langle \langle \rangle$			
$\langle \times \rangle$			\nearrow	
\mathbf{X}	\times		$\times \times$	
$\langle X$	\land	$\langle \rangle$	$\langle X \rangle$	

Data Pre-processing

- Image Pre-Process *:
 - Convert to Grayscale
 - Re-scale 96 x 96

* During Inference, the OV7675 captures the raw image as:

- QQVGA (160 x 120), crop it and resize it to 96x96
- RGB565 and convert it first to RGB888 and after it to Grayscale
- 1FPS

96

Model Design

MobileNetV1 96x96 0.25

A pre-trained multi-layer convolutional network designed to efficiently classify images. Uses around 105.9K RAM and 301.6K ROM with default settings and optimizations. Works best with 96x96 input size. Supports both RGB and grayscale.

Model

Image Size

MobileNetV196x960.2 Alpha

Uses around 83.1K RAM and 218.3K ROM with default settings and optimizations. Works best with 96x96 input size. Supports both RGB and grayscale.

MobileNetV1 96x96 0.1

Uses around 53.2K RAM and 101K ROM with default settings and optimizations. Works best with 96x96 input size. Supports both RGB and grayscale.

N 1														
			Test dat	ta			🖞 Classify all	1	Model te	sting outp	ut			1
		Dashboard	Set the 'ex outcome t	xpected outcom to automatically	ne' for each / score the	i sample impulse	to the desired			mpleted 250 mpleted 300 mpleted 350 mpleted 400	0 / 500 ep 0 / 500 ep 0 / 500 ep 0 / 500 ep 0 / 500 ep	ochs ochs ochs ochs ochs		
		Devices	SAMPLE	EXPECTED O	LEN A	CCURA	RESULT		Tue Jun 21	mpleted 450 15:13:32 20	0 / 500 ep 022 Finished	embedding		
		Z Data sources	Medici	background	- 1	00%	1 background	I	Classifyin	g data for 1 g data for 1	Fransfer lea float32 mode	rning		
	1	Data acquisition	Medici	background	- 1	00%	1 background	E	Scheduling Job starte	job in clus d	ster			
	~	Impulse design	Medici	medicine	- 1	00%	1 medicine	I	Job comple	ted				
		Create impulse	Medici	medicine	- 1	00%	1 medicine	I						
		Transfer learning	Medici	medicine	- 1	00%	1 medicine	1	Model te	sting resul	lts			
	(EON Tuner	Medici	medicine	- 1	00%	1 medicine	E	% ⁴	CCURACY				
		Retrain model	Medici	medicine	- 1	00%	1 medicine	1		00.00%				
	7	Live classification	Medici	medicine	- 1	00%	1 medicine	1	BACKGRO	JND 1	00%	MEDICINE 0%	UNCERTAIN 0%	P.
		Model testing	backgr	background	- 1	00%	1 background	÷	MEDICINE F1 SCORE	1	0%	100% 1.00	0%	
	1	• Versioning	backgr	background	- 1	00%	1 background	1	Feature e	xplorer ③				
		Deployment	backgr	background	- 1	00%	1 background	I	🔵 backę	round - correct				
Training Set Validation	Set	Test Set	backgr	background	- 1	00%	1 background	I	• medi	cine - correct	(C)			
										•		•		
Training, tuning,									<u></u>			•		
evaluation										•				
Algorithm											•		0	
									1.1					

Summary		i
Name		testing.3601u5mo
Expected outcome		testing
CATEGORY	COUNT	
background	1	
medicine	0	
uncertain	0	
Detailed result		Show only unknowns
BACKGROUND		MEDICINE
0.91		0.09
RAW DATA testing.3601u5mo		

Summary					1
Name		testing.36020g3v			
Expected outcome		testing			
CATEGORY	COUNT				
background	0				
medicine	1				
uncertain	0				
Detailed result			Sł	now only ur	hknowns
BACKGROUND		MEDIC	INE		
0.03		0.9	7		
RAW DATA testing.36020g3v					
		288			

Model Inference

New %N Open %O			nano ble33 sense camera Arduino 1.8.19	
Open Recent >	Servo	<u>`</u>		
Sketchbook >	Stepper	>		Ð
Examples >	Temboo	>		
Close #W	RETIRED	>	nano_ble33_sense_camera	
Save % S			22	
Save As ଫିଅଟେ	Examples for Arduino Nano 33 BLE		23 /* Includes	
Dogo Cotup	MLC	>	24 #include <testi01 -="" classification="" image="" inferencing<="" th=""><th>h</th></testi01>	h
Print 98 D	Nano33BLE_System	>	25 #include <restion< th=""><th>112</th></restion<>	112
FINIC	PDM	>	25 #include <arduino_uv 6="" x.n=""></arduino_uv>	
	Scheduler		26	
	I hread Debug		27 #include <stdint.h></stdint.h>	
	USB Mass Storage		28 #include <stdlib b=""></stdlib>	
	USBHID	2	20	
	Examples from Custom Libraries		29	
	Adafruit BusIO	>	30/* Constant variables	
	Adafruit Circuit Playground	>	31 #define EI_CAMERA_RAW_FRAME_BUFFER_COLS 160	
	Adafruit GFX Library	>	32 #define FT CAMERA RAW FRAME BUFFFR ROWS 120	
	Adafruit GPS Library	>		
	Adafruit ILI9341	>	22	
	Adafruit LED Backpack Library	,	34 #define DWORD_ALIGN_PTR(a) ((a & 0x3) ?(((uintptr_t	:)a
	Adafruit STMPE610	>	35	
	Adafruit TouchScreen	>	36 /*	
	Adafruit VL53L1X	`	37 ** NOTE: If you run into TELito arong allocation iss	
	Adafruit Zero FFT Library	>	57 NOTE, IT you full theo filled allocation iss	ue.
	Bee_detection_count_tfg_project_inferencing	>	38 **	
	Car_Parking_Occupancy_DetectionFOMO_inferencing	>	39 ** This may be due to may dynamic memory fragmentati	on.
	Day_2-SciTinyML-NN-Classification_inferencing		40 ** Try defining "-DEI_CLASSIFIER_ALLOCATION_STATIC"	in
	electronic_components_augm_cnn_inferencing		41 ** if it doesn't exist) and conv this file to	
	ESP32-CAM-FLOWERS_Inferencing			
	ESP32-CAM-Fruit-vs-veggles_interencing			
	IESTI01-Motion Classification-Anomaly Detection inferencing		Done uploading.	
	IESTIO1 - Image Classification inferencing) nano ble33 sense accelerometer		
	IESTI01 - Motion Classification inferencing	> nano_ble33 sense accelerometer continuous	Dens in 0.001 seconds	
	IESTI01 - Person Detection inferencing	> nano ble33 sense camera	Done in 0.001 seconds	
	IESTI01 Keyword Spotting project inferencing	> nano ble33 sense microphone	Write 344544 bytes to flash (85 pages)	
	mug_or_not_mug_inferencing	> nano_ble33_sense_microphone_continuous	[=====] 100% (85/85 pages)	
	Nano33_Sense_FOMO_Object_Counting_inferencing	> nicla_sense_inference	Done in 13,663 seconds	
	RTClib	> nicla_vision_fusion		
	SciTinyML22-KWS_inferencing	> nicla_vision_microphone		
	SciTinyMIAfricaMotion_Classification_inferencing	> nicla_vision_microphone_continuous	1 Arduino Nano 22 RIE on Jdouleu uchmodor	n1201
	TensorFlowLite_ESP32	> portenta_h7_camera	A Cumo Nano 33 BLE ON / Gev/CU.USDINOGEN	1201
	TinyML_Devices_Object_Detection_inferencing	> portenta_h7_microphone		
	VL53L1X	> portenta_h7_microphone_continuous	37	
	INCOMPATIBLE	> static_buffer		

Img. Classification Components (nano_ble33_sense_camera.ino)

Initialization

Pre-processing

Pre-processing

Read Image

Crop & Convert

```
void *snapshot_mem = NULL;
uint8_t *snapshot_buf = NULL;
snapshot_mem = ei_malloc(resize_col_sz*resize_row_sz*2);
if(snapshot_mem == NULL) {
    ei_printf("failed to create snapshot_mem\r\n");
   break:
3
snapshot_buf = (uint8_t *)DWORD_ALIGN_PTR((uintptr_t)snapshot_mem);
if (ei_camera_capture(EI_CLASSIFIER_INPUT_WIDTH,
    EI_CLASSIFIER_INPUT_HEIGHT, snapshot_buf) == false) {
    ei_printf("Failed to capture image\r\n");
    if (snapshot_mem) ei_free(snapshot_mem);
    break;
}
ei::signal_t signal;
signal.total_length = EI_CLASSIFIER_INPUT_WIDTH * EI_CLASSIFIER_INPUT_HEIGHT;
signal.get_data = &ei_camera_cutout_get_data;
```

Interpreter + Model

Interpreter + Model

// run the impulse: DSP, neural network and the Anomaly algorithm
ei_impulse_result_t result = { 0 };

EI_IMPULSE_ERROR ei_error = run_classifier(&signal, &result, debug_nn);
if (ei_error != EI_IMPULSE_OK) {
 ei_printf("Failed to run impulse (%d)\n", ei_error);
 ei_free(snapshot_mem);
 break;
}

1

Post-processing

Detection responder

```
// print the predictions
        ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",
                  result.timing.dsp, result.timing.classification, result.timing.anomaly);
#if EI_CLASSIFIER_OBJECT_DETECTION == 1
        bool bb_found = result.bounding_boxes[0].value > 0;
        for (size_t ix = 0; ix < EI_CLASSIFIER_OBJECT_DETECTION_COUNT; ix++) {</pre>
            auto bb = result.bounding_boxes[ix];
            if (bb.value == 0) {
                continue;
            }
            ei_printf("
                           %s (%f) [ x: %u, y: %u, width: %u, height: %u ]\n",
            bb.label, bb.value, bb.x, bb.y, bb.width, bb.height);
        }
        if (!bb_found) {
            ei_printf("
                           No objects found\n");
        3
#else
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {</pre>
                           %s: %.5f\n", result.classification[ix].label,
            ei_printf("
                                         result.classification[ix].value);
        }
```


Main References:

- UNIFEI IESTI01 TinyML Machine Learning for Embedding Devices
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
- Introduction to Embedded Machine Learning Coursera/Edge Impulse
- Computer Vision with Embedded Machine Learning Coursera/Edge Impulse
- "Deep Learning with Python" book by François Chollet
- "TinyML" book by Pete Warden, Daniel Situnayake

I want to thank Shawn Hymel and Edge Impulse, Pete Warden and Laurence Moroney from Google, Professor Vijay Janapa Reddi and Brian Plancher from Harvard, and the rest of the TinyMLedu team for preparing the excellent material on TinyML that is the basis of this Workshop.

The SciTinyML workshops are part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks

UNIFEI