

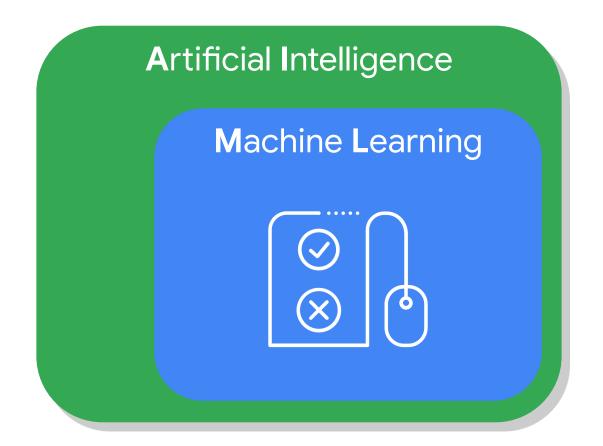
The Future of Machine Learning is Tiny and Bright

Brian Plancher Barnard College, Columbia University Harvard John A. Paulson School of Engineering and Applied Sciences brianplancher.com

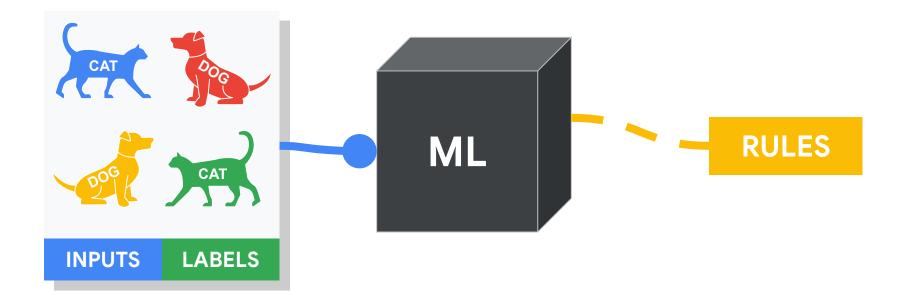
Quick Disclaimer: Today will be both too fast and too slow!

What Is Embedded ML? (TinyML)

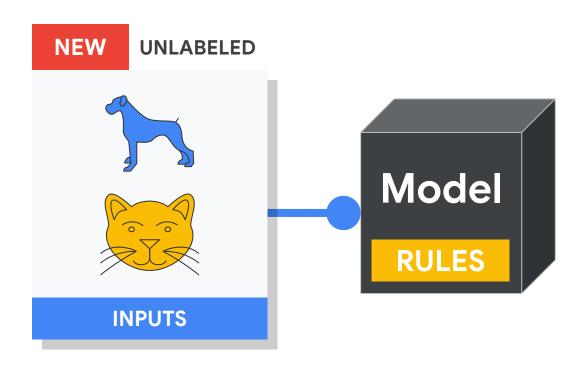
What Is ML?



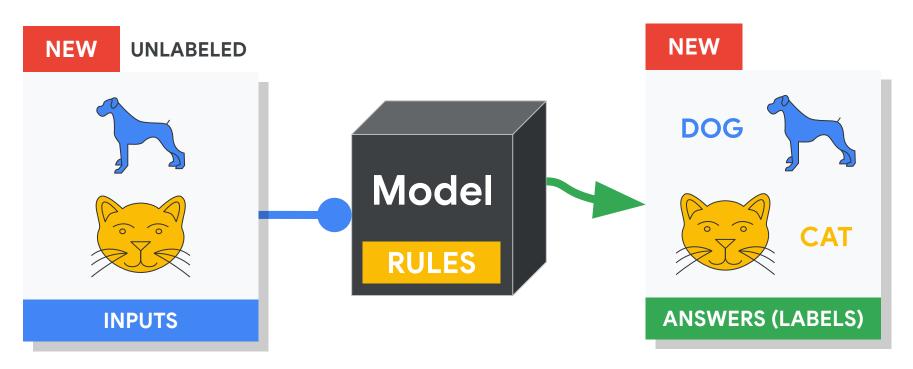
ML works by **Training** a model



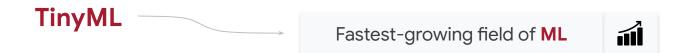
After it's **learned**...

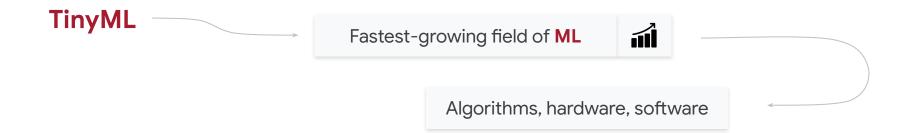


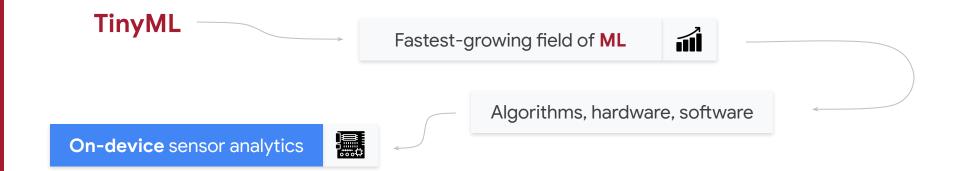
After it's **learned** you can make **predictions**:

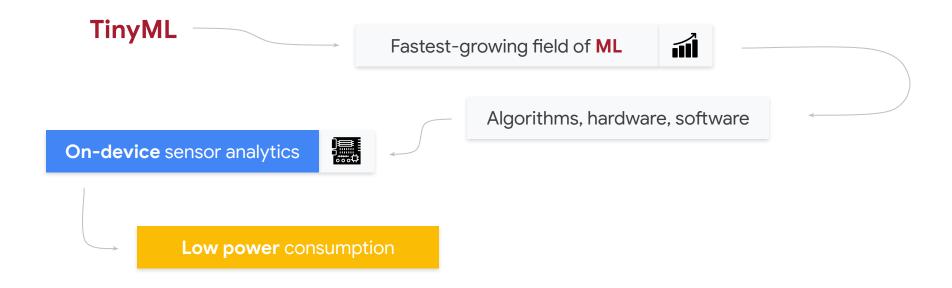


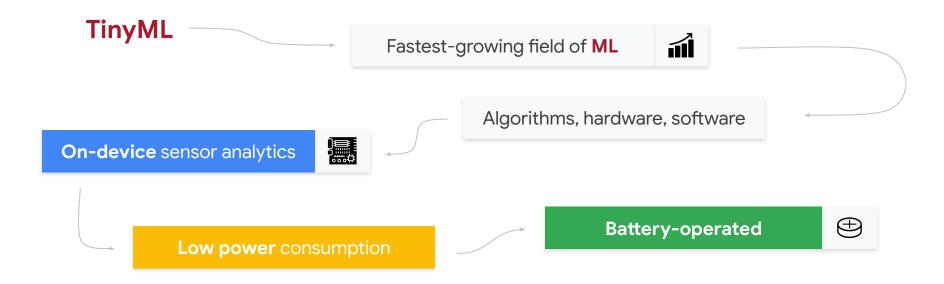
What Is Embedded ML? (TinyML)

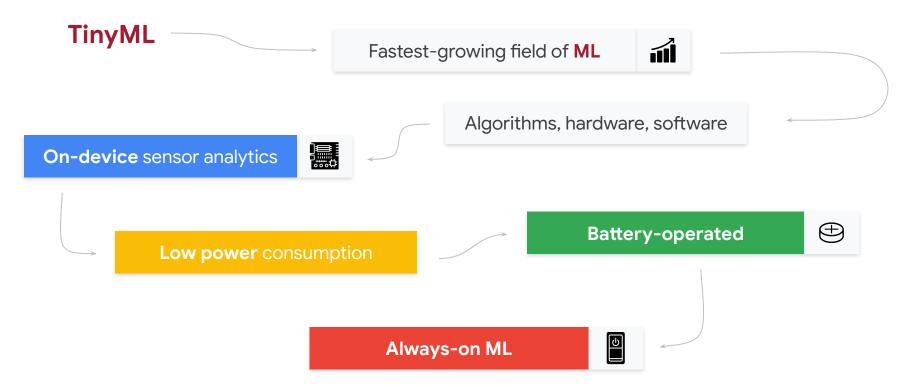


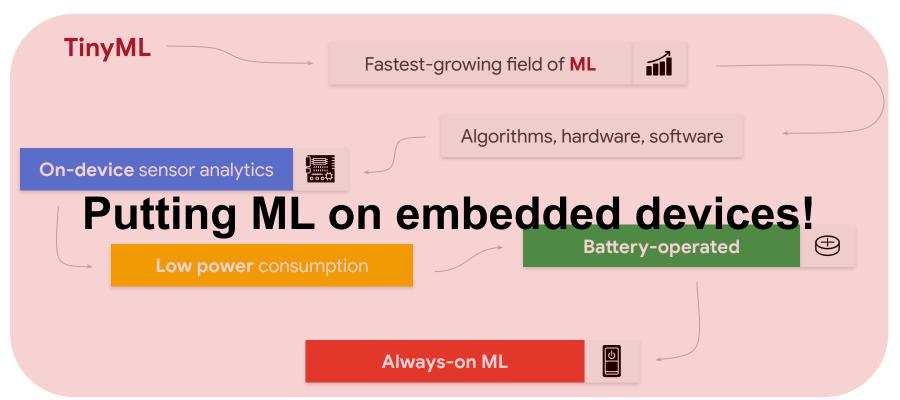












Kicking

Penalty kicking

Passing

Dribbling

Promising Social Applications of TinyML

Wildlife conservation

ElephantEdge

Building The World's Most Advanced Wildlife Tracker.

Agriculture

May be able to reduce agrichemical use to 0.1% of conventional blanket spraying

Technology: The Future of Agriculture

Anthony King

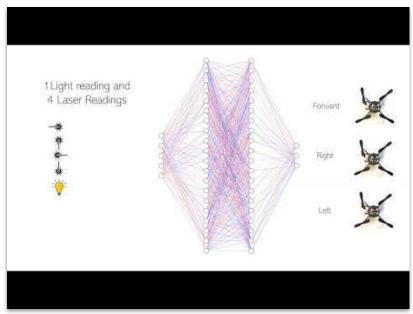
Nature 544, S21-S23 (2017) | Cite this article

161k Accesses | 132 Citations | 209 Altmetric | Metrics

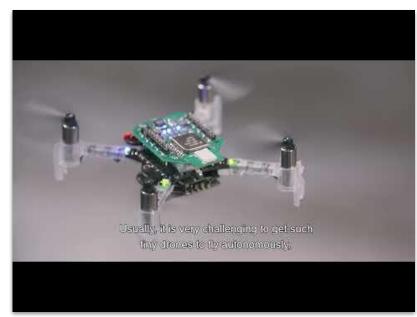
And many more!

https://arxiv.org/pdf/2205.05748.pdf

TinyRL: Autonomous Navigation on Nano Drone



[ICRA'21]



[IROS'21]

Why Tiny?

IoT 2.0: Intelligence on Things

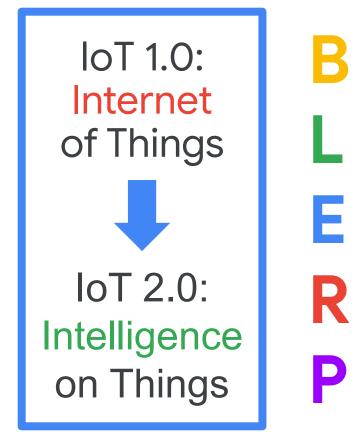
No Good Data Left Behind

5 Quintillion

bytes of data produced every day by IoT

<1%

of unstructured data is analyzed or used at all



IoT 2.0: Intelligence on Things **Bandwidth**

Latency

Energy

Reliability

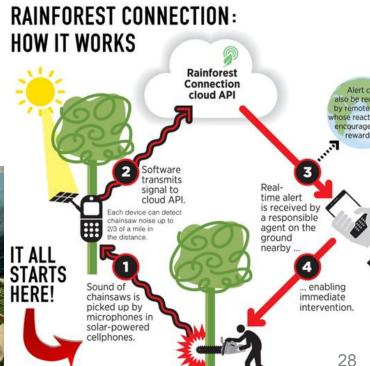
Privacy

IoT 2.0: Intelligence on Things

IoT 2.0: Intelligence on Things

Bandwidth

Energy



IoT 2.0: Intelligence on Things Bandwidth

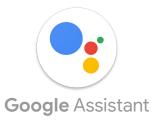
Energy

The OpenCollar

initiative

IoT 2.0: Intelligence on Things

Privacy



IoT 2.0: Intelligence on Things

Latency

Privacy

IoT 2.0: Intelligence on Things Energy
Reliability
Privacy

IoT 2.0: Intelligence on Things **Bandwidth**

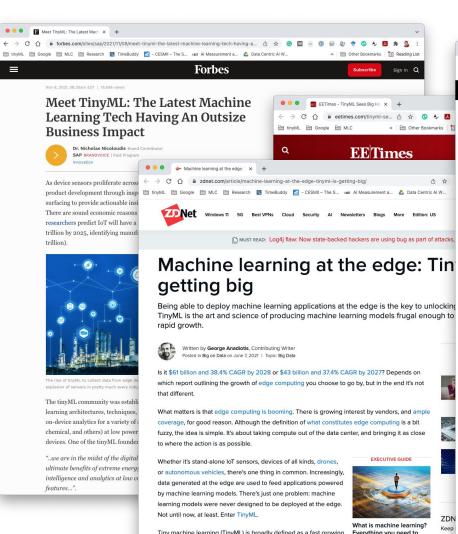
Latency

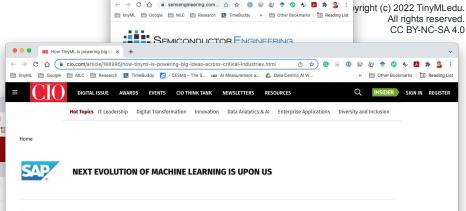
Energy

Reliability

Privacy

TinyML to the rescue!





SPONSORED

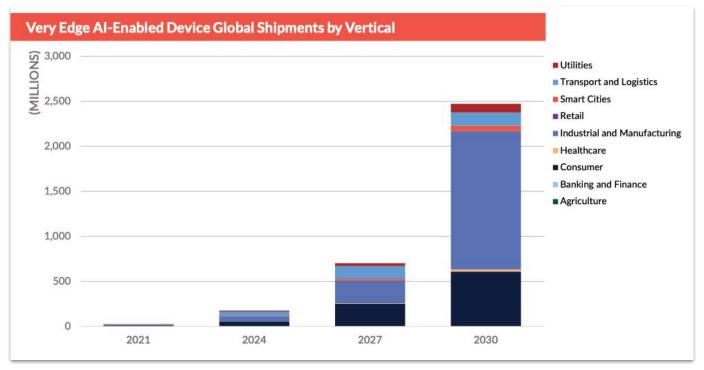
How TinyML is powering big ideas across critical industries

BrandPost Sponsored by SAP | Learn More | | JUL 18, 2021 4:31 PM PDT

From cars and TVs to lightbulbs and doorbells. So many of the objects in everyday life have 'smart' functionality because the manufacturers have built chips into them.

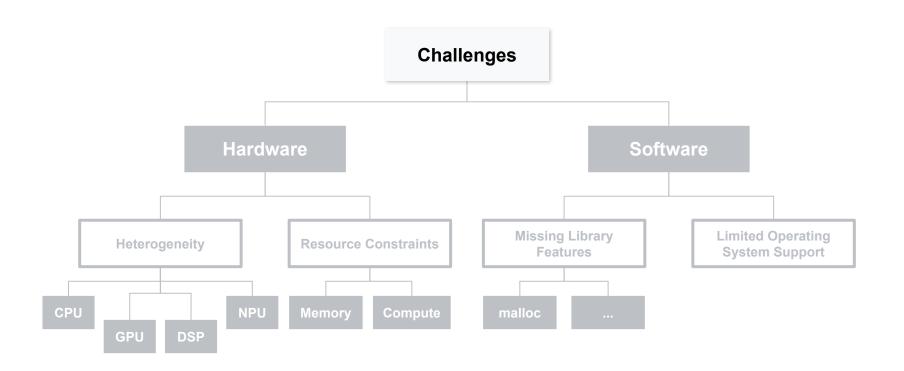
But what if you could also run machine learning models in something as small as a golf ball dimple? That's the reality that's being enabled by TinyML, a broad movement to run tiny machine learning algorithms on embedded devices, or those with

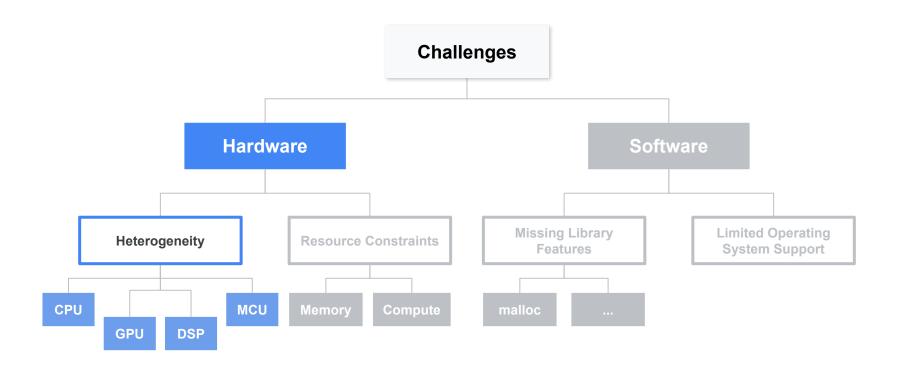
Market Forecast



Source: ABI Research: TinyML

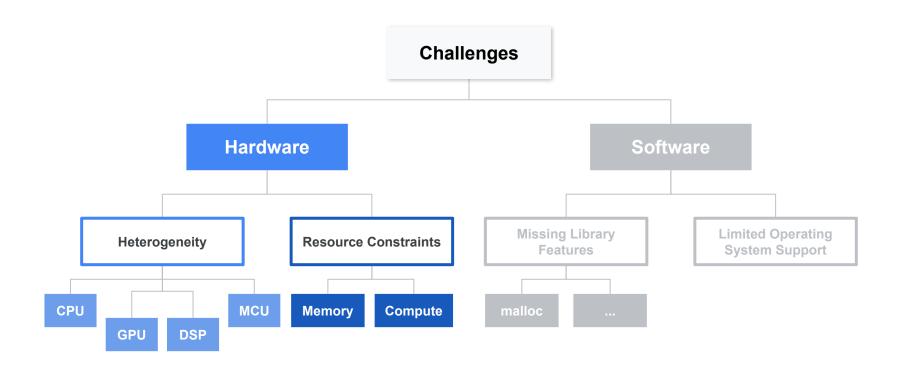
TinyML Challenges





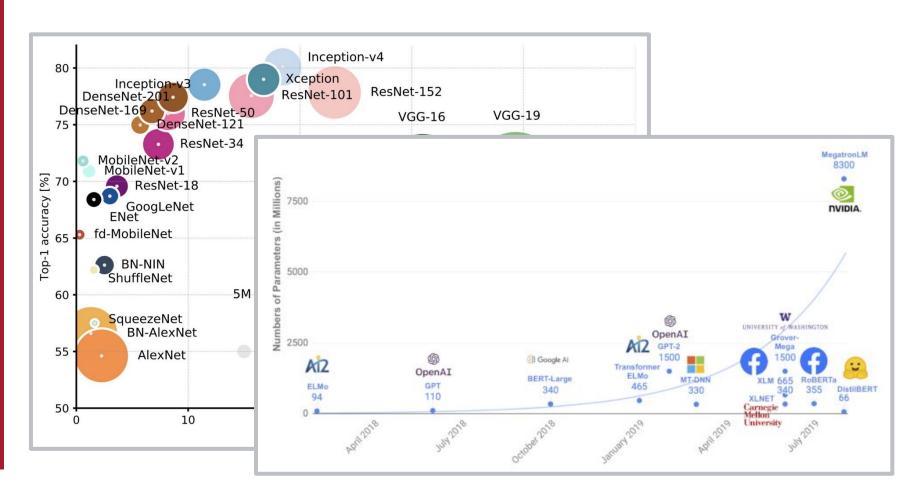
250 Billion MCUs today

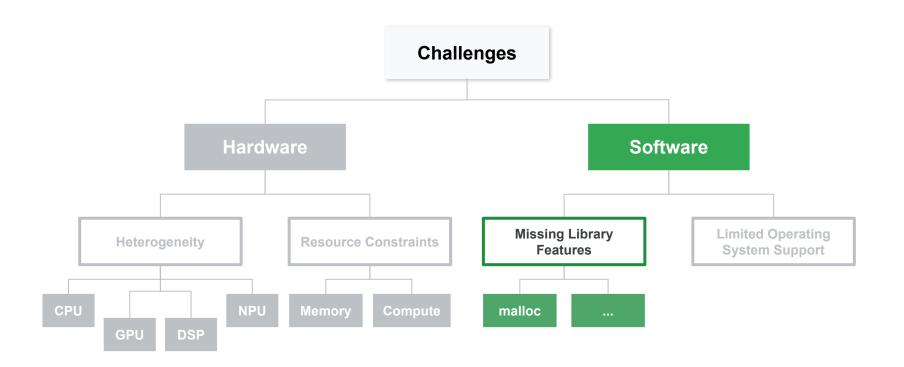
Board	MCU / ASIC	Clock	Memory	Sensors	Radio
Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic, Camera	None
Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic, IMU, Temp, Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE

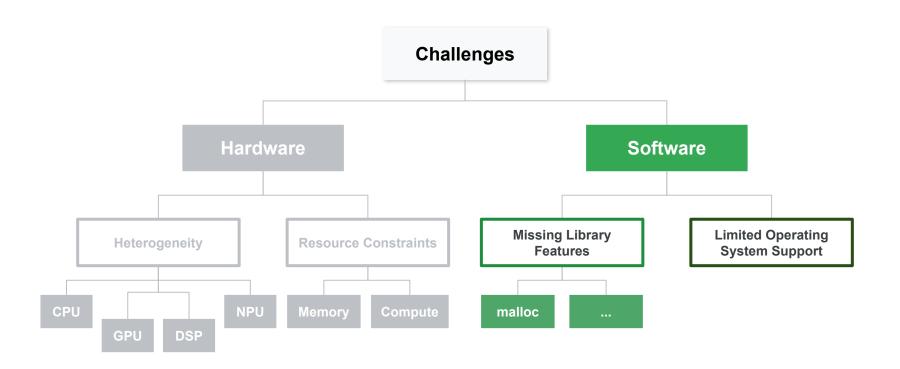


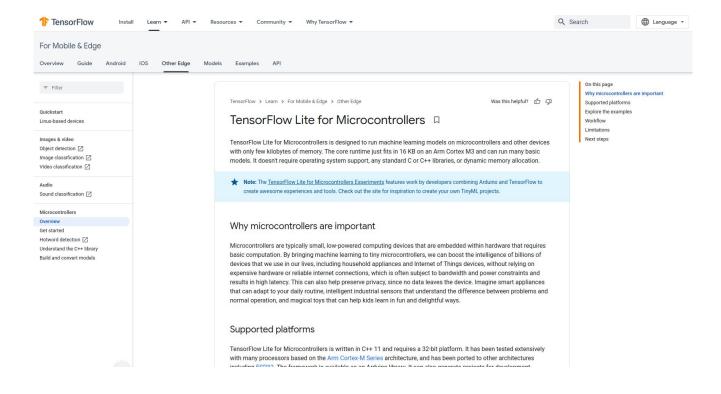
Board	MCU / ASIC	Clock	Memory	Sensors	Radio
Himax WE-I Plus EVB	HX6537-A 32-bit EM9D DSP	400 MHz	2MB flash 2MB RAM	Accelerometer, Mic, Camera	None
Arduino Nano 33 BLE Sense	32-bit nRF52840	64 MHz	1MB flash 256kB RAM	Mic, IMU, Temp, Humidity, Gesture, Pressure, Proximity, Brightness, Color	BLE
SparkFun Edge 2	32-bit ArtemisV1	48 MHz	1MB flash 384kB RAM	Accelerometer, Mic, Camera	BLE
Espressif EYE	32-bit ESP32-DOWD	240 MHz	4MB flash 520kB RAM	Mic, Camera	WiFi, BLE











. . .

TensorFlow Lite Micro

Himax WE-I Plus EVB

SparkFun Edge 2

Espressif EYE

...

Create library

Turn your impulse into optimized source code that you can run on any device.

Cube.MX CMSIS-PACK

C++ library Arduino library

TensorRT library

Run your impulse directly

Run this impulse directly on your mobile phone or computer, no app required.

Build firmware

Get a ready-to-go binary for your development board that includes your impulse.

Arduino Nano 33 BLE Sense Espressif ESP-EYE (ESP32)

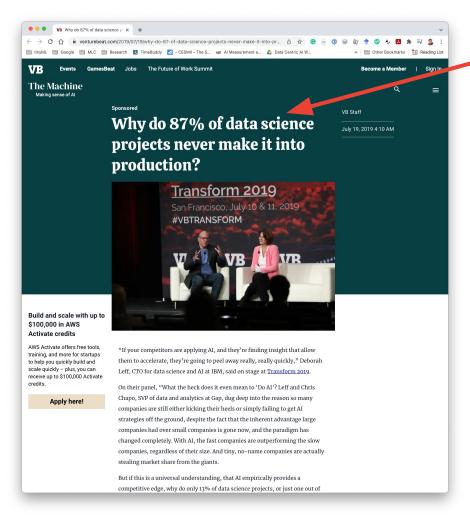
Raspberry Pi RP2040 SiLabs Thunderboard Sense 2 SiLabs xG24 Dev Kit

Himax WE-I Plus Nordic nRF52840 DK +

Nordic nRF5340 DK + IKS02A1



Scaling TinyML

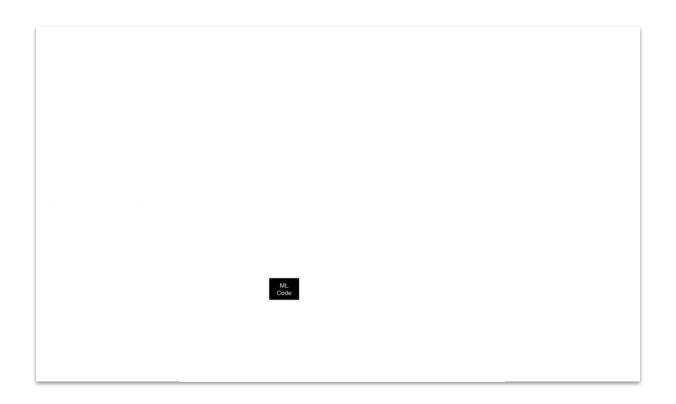


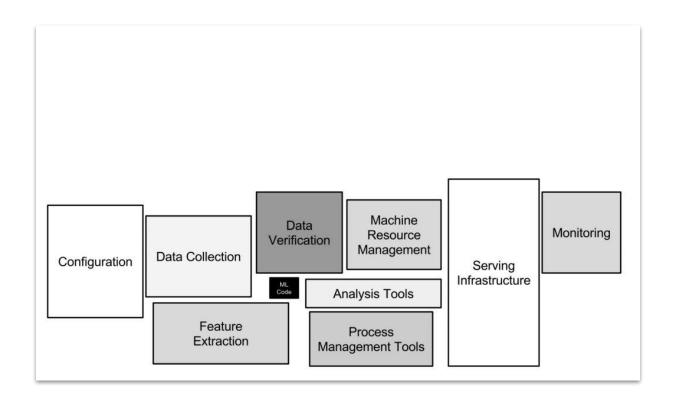
Let's quantify this a bit. In 2019 alone, approximately **USD 40 billions** were invested into privately held AI companies. If we extrapolate this and throw the approximated success rate of AI projects into these figures (and completely exclude intracompany ML investments), we reach the conclusion that in 2019, around **USD 38 billions were wasted due to unsuccessful Machine Learning projects.**

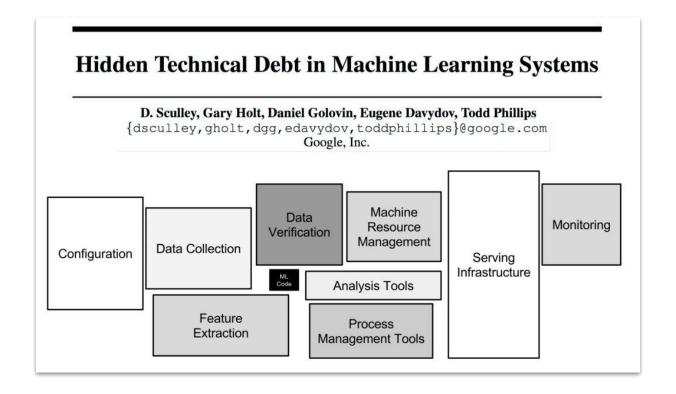
Predicts 2019: Analytics and BI Solutions

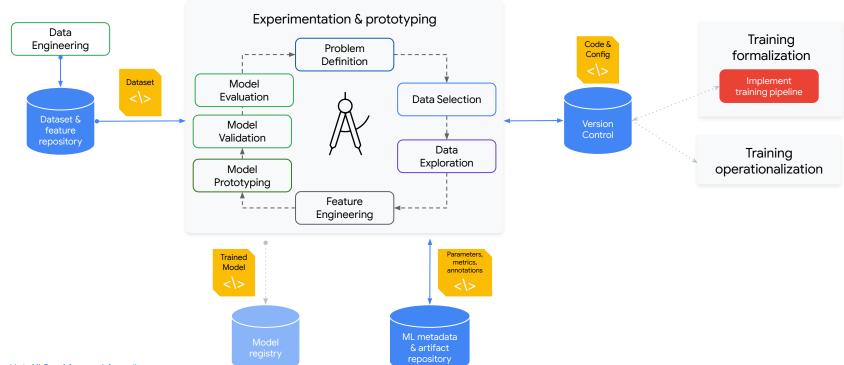
- Through 2020, 80% of AI projects will remain alchemy, run by wizards whose talents will not scale in the organization.
- Through 2022, only 20% of analytic insights will deliver business outcomes.
- By 2021, proof-of-concept analytic projects using quantum computing infrastructure will have outperformed traditional analytic approaches in multiple domains by at least a factor of 10

Source: https://blogs.gartner.com/andrew_white/2019/01/03/our-top-data-and-analytics-predicts-for-2019/

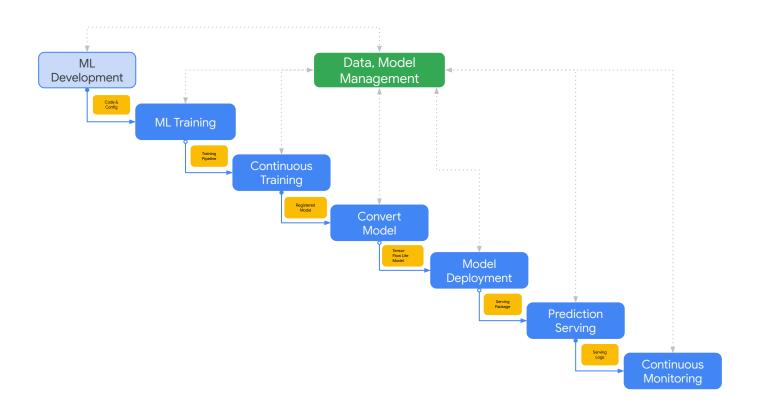


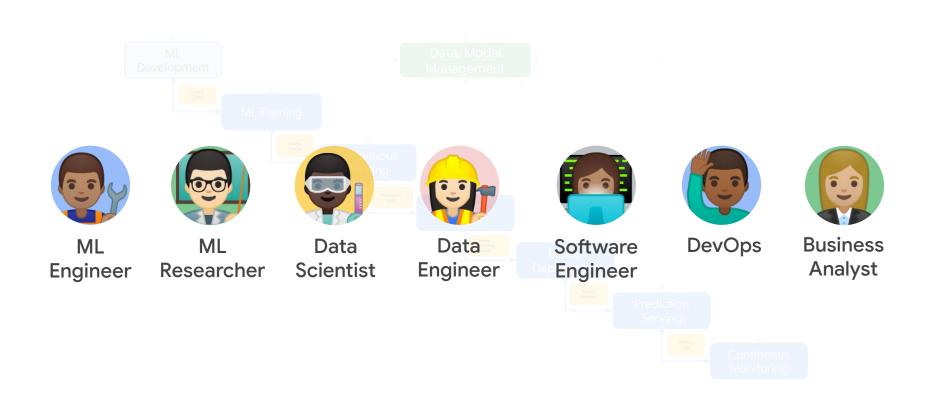




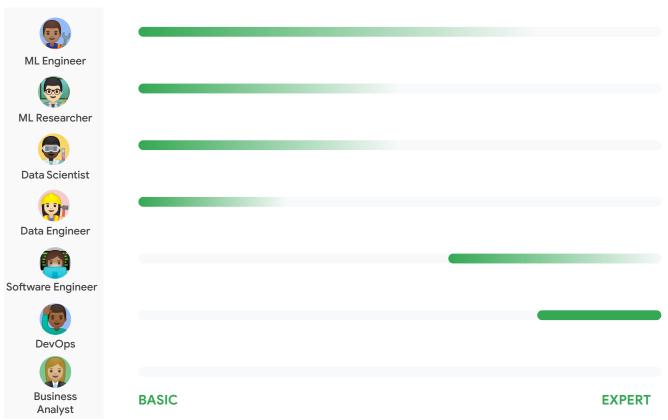


Practitioners guide to MLOps: A framework for continuous delivery and automation of machine learning





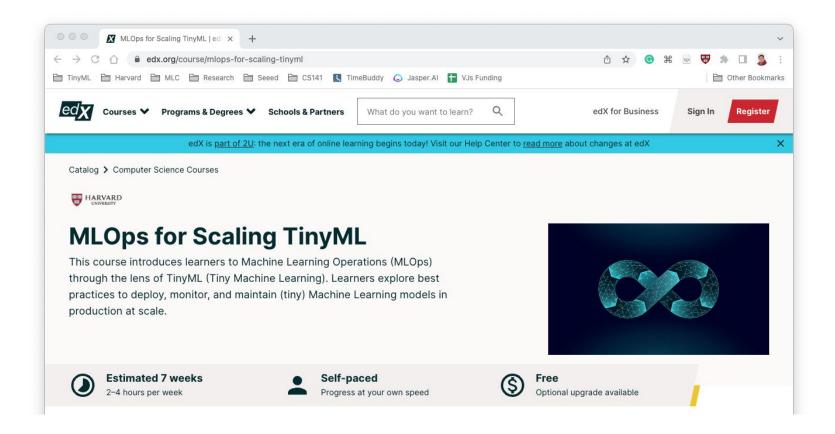
Deployment Expertise



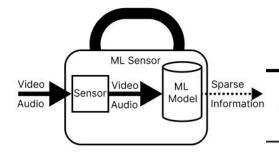
BREADTH

of experience, knowledge, & sectors





ML Sensors



MACHINE LEARNING SENSORS

Pete Warden ¹ Matthew Stewart ² Brian Plancher ² Colby Banbury ² Shvetank Prakash ² Emma Chen ² Zain Asgar ¹ Sachin Katti ¹ Vijay Janapa Reddi ²

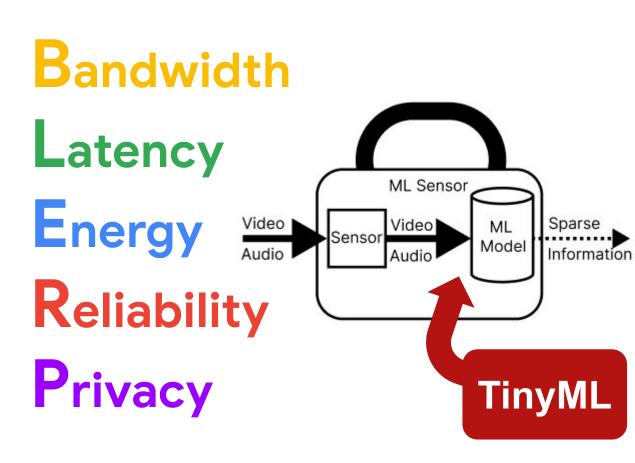
¹Stanford University ²Harvard University

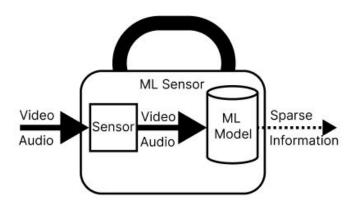
ABSTRACT

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity, and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for embedding sensor intelligence on edge devices to combat these challenges. Our vision for "sensor 2.0" entails segregating sensor input data and ML processing from the wider system at the hardware level and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the software stack of the controlling microprocessor on an embedded system and how the modularity of ML sensors alleviates these problems. ML sensors increase privacy and accuracy while making it easier for system builders to integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0.

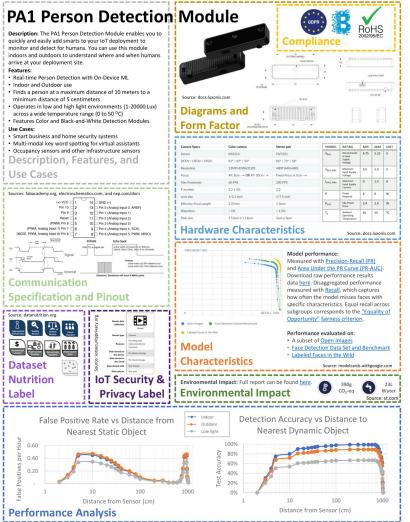
IoT 1.0: Internet of Things IoT 2.0:

Intelligence on Things



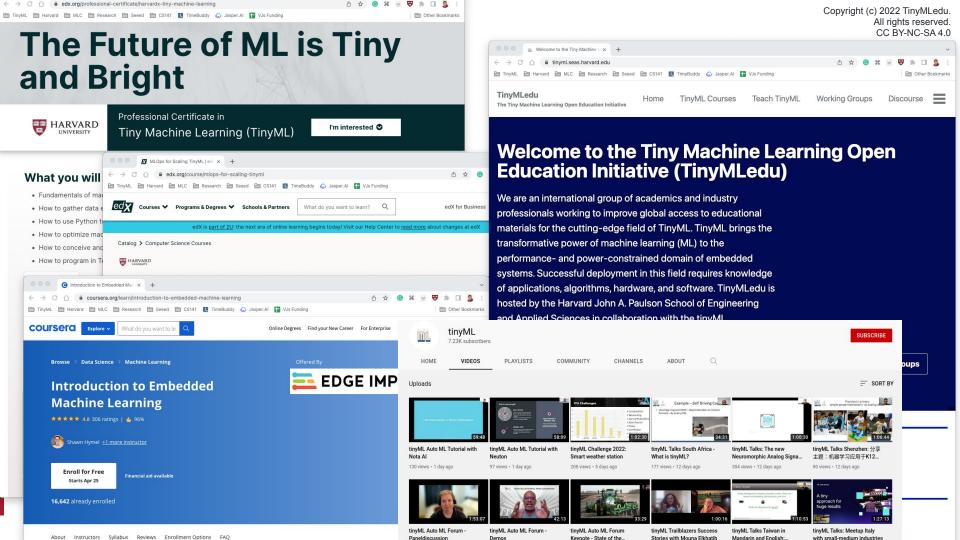


https://mlsensors.org/



Copyright (c) 2022 TinyMLedu. All rights reserved. CC BY-NC-SA 4.0

How can you learn more?



The Future of Machine Learning is Tiny and Bright

Brian Plancher Barnard College, Columbia University Harvard John A. Paulson School of Engineering and Applied Sciences brianplancher.com

