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Challenges in Robotics

mm Autonomous navigation

mm Resource constrained

e SWaP
e Size
e Weight
e Power

o Smaller robots are

e Safer
e Cheaper
e Even more constrained!
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Motivation

e Insects use simple rules to navigate using little
sensory and computational resources.

o Inspired by nature, finite state machines have
proven simple rules can solve complex navigation

problems on robots.*
o Application-specific FSM'’s can be tedious to design
and may lack generalization.

*McGuire, K. N., Wagter, C. D., Tuyls, K., Kappen, H. J. & de Croon, G. C. H. E. Minimal
navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot.
4, eaaw9710 (2019).
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Motivation

e Tiny machine learning (tinyML): ML applications on
low-power, cheap, commodity hardware.

e Strong focus on low power consumption for always-
on use-cases on battery operated devices.

e How can tinyML impact robotics?
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Tiny Robot Learning (tinyRL)

o Inspired by tinyML, in this work, we introduce tiny
robot learning (tinyRL).

o We deploy a tiny ML model onboard a highly
constrained nano quadcopter for source seeking.

o Our methodology achieves robust and efficient
source seeking, running a deep-RL model onboard

a nano quadcopter.
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Source Seeking

o Autonomous machines locating light, gas, or
radiations sources.

e An important task in search and rescue and
Inspection.

o« We imagine small, agile and inexpensive aerial
robots for source seeking.

e We use light seeking as an application to show how
a tiny deep-RL policy can be a viable alternative to
simple finite state machines.
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Method

e System Design
e Simulation Environment
e POMDP Setup

o Inference Implementation
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System design

Custom Light Sensor

BitCraze CrazyFlie 2.1
e ARM Cortex-M4
e CPU: 1-core & 168 MHz
e RAM: 196 kB
e Storage: 1MB
e Available RAM: 33 kB
e Weight: 33 grams

B Dynamic Variables Source Seeking Stack
Free Space B Nominal Flight Stack
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Simulation Environment

e We use the Air Learning platform*, which
couples with Microsoft AirSim to provide a
deep reinforcement learning back end.

e Source position and obstacle positions are

randomized.
o Alight source is modeled as a Gaussian = Fitted
= e Recorded
. . . . £ 200 :
distribution, based on data captured in our £ Npise
flight room. 5 I T a
*S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J. Reddi, “Air
learning: An Al research platform for algorithm-hardware benchmarking CEE ga{,"a']d #%hnA-Pau.lsor
of autonomous aerial robots”, Machine Learning, Special Issue on RL for Real Life, in press, 2021 ond Z‘;,pTied"S%!iZﬁﬁgg“g



POMDP Setup
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Inference Implementation

e Obstacle avoidance requires low-latency inference.

e Libraries considered:

o  TensorFlow Lite, not fast enough.
o uTensor, ran out of memory.

e Too much overhead meant we developed a custom lightweight C
Inference library.

e Result: capable of inference at up to 100Hz, higher than the sensor

B Dynamic Variables Source Seeking Stack
Free Space B Nominal Flight Stack
0 25 50 75 100 125 150 175
RAM Size [kB]

Harvard John A. Paulsor
School of Engineering
and Applied Sciences



Baseline Comparison in Simulation

Model description Success
e Two baselines in simulation: Our deep RL algorithm 96%
: FSM baseline 84%
o Random actions e —— e
o FSM baseline geared towards exploration andom actions 0

e To the best of our knowledge, no publicly available algorithm exists that
can work with our sensor inputs to avoid obstacles and seek a light
source.

e The deep-RL model outperforms the FSM baseline in all metrics.
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Flight Tests

e The deep-RL model reaches a 94% success rate.

e The FSM Baseline reaches a 75% success rate.

e Between obstacle densities, our policy found the source 55%-70% faster than
the baseline.

e The results show that our policy generalizes far beyond what was
presented in simulation.
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Edge Computing Lab
https://edge.seas.harvard.edu/

ArXiv
https://arxiv.org/abs/1909.11236
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Tiny Robot Learning (tinyRL) for Source Seeking
on a Nano Quadcopter
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Abstract—We present fully autonomous source seeking on-
board a highly constrained nano quadcopter, by contributing
application-specific system and observation feature design to
enable inference of a deep-RL policy onboard a nano quadcopter.
Our deep-RL algorithm finds a high-performance solution to
a challenging problem, even in presence of high noise levels
and generalizes across real and simulation environments with
different obstacle configurations. We verify our approach with
simulation and in-field testing on a Bitcraze CrazyFlie using
only the cheap and ubig Cortex-M4 micro ller unit.
The results show that by end-to-end application-specific system
design, our contribution consumes almost three times less ad-
ditional power, as compared to a competitive learning-based
navigation approach onboard a nano quadcopter. Thanks to our
observation space, which we carefully design within the resource

straints, our solution achi a 94% success rate in cluttered
and randomized test environments, as compared to the previously
achieved 80%. We also compare our strategy to a simple finite
state machine (FSM), geared towards efficient exploration, and
demonstrate that our policy is more robust and resilient at
obstacle avoidance as well as up to 70% more efficient in source
seeking. To this end, we contribute a cheap and lightweight end-
to-end tiny robot learning (tinyRL) solution, running onboard
a nano quadcopter, that proves to be robust and efficient in a
challenging task.

Index Terms—Motion and Path Planning, Aerial Systems:
Applications, Reinforcement Learning

T Iarnaniamia

Fig. 1. CrazyFlic nano quadcopter running a deep reinforcement leaming
policy fully onbaard with robust obstacle avoidance and source seeking.

methods, and the sensor and software selection needs to be
carefully designed. The memory constraints means the system
cannot store large maps used in traditional planning, the
battery constraints means that we need to consider energy
consumption of the system [T). and the limited compute power
means that large neural networks cannot run.

Source seeking applications needs motion planning capable
of obstacle avoidance that can be deployed quickly. with-

Bardienus P. Duisterhof, Srivatsan Krishnan, Jonathan J. Cruz, Colby R. Banbury, William Fu, Aleksandra Faust, Guido C. H. E. de
Croon, Vijay Janapa Reddi, Tiny Robot Learning (tinyRL) for Source Seeking on a Nano Quadcopter, ICRA 2021
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Gas Source Localization (GSL)

Use cases:
- Dangerous leaks with many casualties.
- Gas leaks in chemical plants > SSS
- Chemical attack
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In this work

& A swarm of fully autonomous and collaborative
an gas-seeking nano quadcopters.

™ A novel bug algorithm for GSL, using extremely
H little resources and evolved parameters.

A pipeline for end-to-end environment

~
=
- generation and gas dispersion modelling (GDM).
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Related Work

Melanie Joyce Anderson, Joseph Garret Sullivan, Timothy Horiuchi, Sawyer Buckminster Fuller, and
Thomas L Daniel. A bio-hybrid odor-guided autonomous paJmsized air vehicle. Bioinspiration

Biomimetics, 2020.
TUDelft
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Methodology

System

Design
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Simulation Algorithm

Pipeline Design

Harvard John A.Paulson UNIVERSITAT oe
School of Engineering =l
and Applied Sciences “H—H BARCELONA

]
TUDelft ¥




System Design

Requirements:
* QObstacle avoidance
*  Odometry

* (Gassensing
* Relative ranging
*  Communication
Payload:
- Flow deck
- Multiranger deck
- Custom gas/UWB PCB

Weight: 37.5g
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Simulation pipeline

AutoGDM Swarmulator
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AutoGDM — Gas Dispersion Modeling

Environment Generation

Occupancy Map CAD Flow Volume

A
" || <&

Filament Simulation

Concentration Field

<~ Place Source

i

Computational Fluid Dynamics

Mesh

Select Boundary Conditions

Y
Flow Field
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Sniffy Bug

e Our solution: Sniffy Bug, a novel PSO-powered
bug algorithm for GSL using evolved
parameters.

e Generates waypoints in own reference frame
using particle swarm optimization (PSO).

e Tracks waypoints using novel bug algorithm.
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Evolutionary Optimization

* Genome contains 13 variables:
o Waypoint generation weights: ‘Exploring’ and ‘Seeking’.
o All thresholds for Sniffy Bug obstacle avoidance and swarm avoidance.

* Cost of each agent:

o Average distance to source.
o Penalty for collision ( + 1.0).

Harvard John A. Paulson e UNIVERSITATDE
B

School of Engineering |||
and Applied Sciences = ARCELONA

]
TUDelft




Evolutionary Optimization

* Hard instance problem

* Heterogeneity in environments = learn to solve easy
environments
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Results - Simulation

Success Rate

Avg Distance
to Source [m]

Avg time
to source [s]

Manual Parameters 89 % 3.29 51.1
Evolved without Doping | 85 % 2.90 47.1
Evolved with Doping 93 % 2.73 39.2

SE 7.5

°3

SB 2.5

Manual Evolved Evolved
Without Doping With Doping

%
TUDelft
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Conclusion

We contribute:
* The first fully autonomous swarm of gas-seeking
nano-quadcopters in cluttered GPS-denied

environments.
https://arxiv.org/abs/2107.05490

Sniffy Bug: A Fully
Autonomous Swarm of Gas-Seeking
Nano Quadcopters in Cluttered Environments
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https://arxiv.org/abs/2107.05490

Thanks for attending!

Collaborators and Mentors
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