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● Insects use simple rules to navigate using little 

sensory and computational resources.

● Inspired by nature, finite state machines have 

proven simple rules can solve complex navigation 

problems on robots.*

● Application-specific FSM’s can be tedious to design 

and may lack generalization.

Motivation

*McGuire, K. N., Wagter, C. D., Tuyls, K., Kappen, H. J. & de Croon, G. C. H. E. Minimal 

navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot.

4, eaaw9710 (2019).



● Tiny machine learning (tinyML): ML applications on 

low-power, cheap, commodity hardware.

● Strong focus on low power consumption for always-

on use-cases on battery operated devices.

● How can tinyML impact robotics?

Motivation



● Inspired by tinyML, in this work, we introduce tiny 

robot learning (tinyRL).

● We deploy a tiny ML model onboard a highly 

constrained nano quadcopter for source seeking.

● Our methodology achieves robust and efficient 

source seeking, running a deep-RL model onboard 

a nano quadcopter.

Tiny Robot Learning (tinyRL)



● Autonomous machines locating light, gas, or 

radiations sources.

● An important task in search and rescue and 

inspection.

● We imagine small, agile and inexpensive aerial 

robots for source seeking.

● We use light seeking as an application to show how 

a tiny deep-RL policy can be a viable alternative to 

simple finite state machines.

Source Seeking



● System Design

● Simulation Environment

● POMDP Setup

● Inference Implementation

Method



System design

BitCraze CrazyFlie 2.1

● ARM Cortex-M4

● CPU: 1-core & 168 MHz

● RAM: 196 kB

● Storage: 1MB

● Available RAM: 33 kB

● Weight: 33 grams



Simulation Environment

● We use the Air Learning platform*, which 

couples with Microsoft AirSim to provide a 

deep reinforcement learning back end.

● Source position and obstacle positions are 

randomized.

● A light source is modeled as a Gaussian 

distribution, based on data captured in our 

flight room.

*S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J. Reddi, “Air

learning: An AI research platform for algorithm-hardware benchmarking

of autonomous aerial robots”,  Machine Learning, Special Issue on RL for Real Life, in press, 2021



POMDP Setup



Inference Implementation

● Obstacle avoidance requires low-latency inference.

● Libraries considered:
○ TensorFlow Lite, not fast enough.

○ uTensor, ran out of memory.

● Too much overhead meant we developed a custom lightweight C 

inference library.

● Result: capable of inference at up to 100Hz, higher than the sensor 

polling rate.



Baseline Comparison in Simulation

● Two baselines in simulation:
○ Random actions

○ FSM baseline geared towards exploration

● To the best of our knowledge, no publicly available algorithm exists that 

can work with our sensor inputs to avoid obstacles and seek a light 

source. 

● The deep-RL model outperforms the FSM baseline in all metrics.



Flight Tests

● The deep-RL model reaches a 94% success rate.

● The FSM Baseline reaches a 75% success rate.

● Between obstacle densities, our policy found the source 55%-70% faster than 

the baseline.

● The results show that our policy generalizes far beyond what was 

presented in simulation.



Demo



Edge Computing Lab
https://edge.seas.harvard.edu/

ArXiv
https://arxiv.org/abs/1909.11236
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Gas Source Localization (GSL)

Use cases:
• Dangerous leaks with many casualties.
• Gas leaks in chemical plants → $$$
• Chemical attack



In this work

A swarm of fully autonomous and collaborative 
gas-seeking nano quadcopters.

A novel bug algorithm for GSL, using extremely 
little resources and evolved parameters.

A pipeline for end-to-end environment 
generation and gas dispersion modelling (GDM).



Melanie Joyce Anderson, Joseph Garret Sullivan, Timothy Horiuchi, Sawyer Buckminster Fuller, and 
Thomas L Daniel. A bio-hybrid odor-guided autonomous palmsized air vehicle. Bioinspiration 
Biomimetics, 2020.

Arena size: 
0.8 x 2.0 m 
(wind 
tunnel)

Related Work
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System Design

Requirements:
• Obstacle avoidance
• Odometry
• Gas sensing
• Relative ranging
• Communication
Payload:
• Flow deck 
• Multiranger deck
• Custom gas/UWB PCB

Weight: 37.5g



Simulation pipeline

AutoGDM Swarmulator



AutoGDM – Gas Dispersion Modeling



Sniffy Bug
● Our solution: Sniffy Bug, a novel PSO-powered 

bug algorithm for GSL using evolved 
parameters.

● Generates waypoints in own reference frame 
using particle swarm optimization (PSO).

● Tracks waypoints using novel bug algorithm.



• Genome contains 13 variables:
oWaypoint generation weights: ‘Exploring’ and ‘Seeking’.

oAll thresholds for Sniffy Bug obstacle avoidance and swarm avoidance.

• Cost of each agent:
oAverage distance to source. 

oPenalty for collision ( + 1.0).

Evolutionary Optimization



• Hard instance problem 

• Heterogeneity in environments → learn to solve easy 
environments

Evolutionary Optimization



Results - Simulation
Manual parameters

Evolved using doping



Speed: 4x



Speed: 12x



Conclusion
We contribute:

• The first fully autonomous swarm of gas-seeking 
nano-quadcopters in cluttered GPS-denied 
environments.

https://arxiv.org/abs/2107.05490

https://arxiv.org/abs/2107.05490


Thanks for attending!
Collaborators and Mentors
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