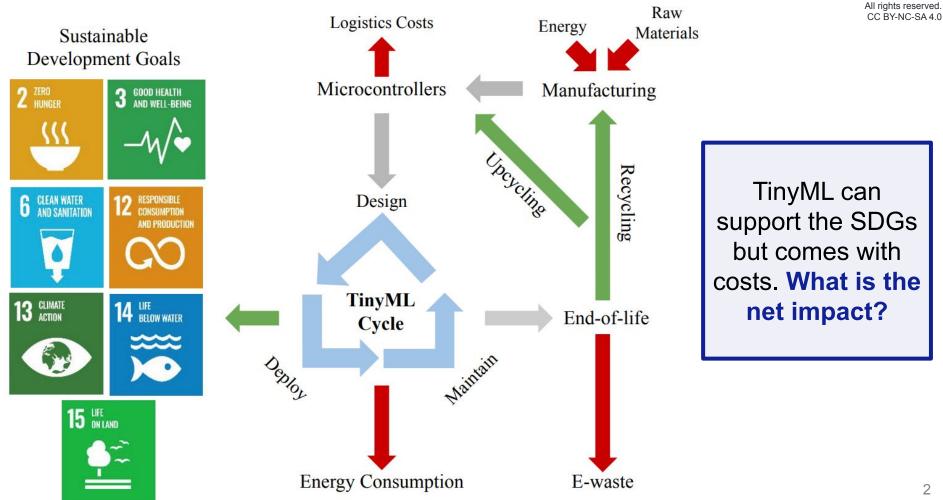
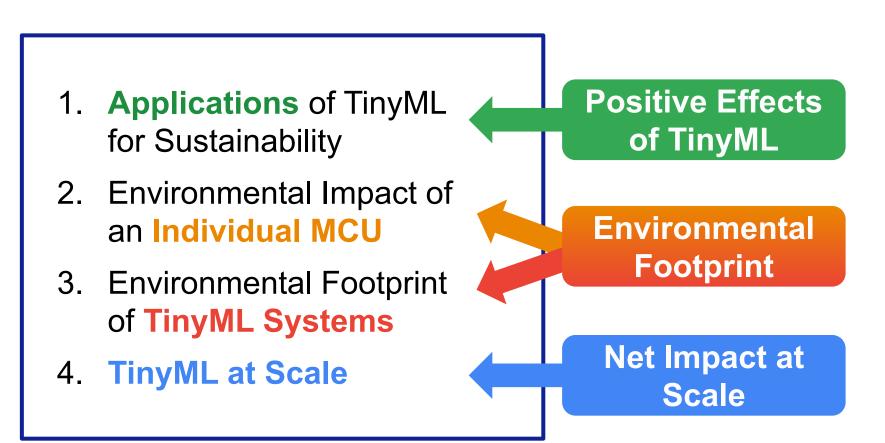
Workshop on Scientific Use of Machine Learning on Low-Power Devices: Applications and Advanced Topics

17 - 21 April 2023 An ICTP Virtual Meeting Trieste, Italy Further information: http://indico.ictp.al.gov/in/10164/ wm35220ictp.al

В


Is TinyML Sustainable? Assessing the Environmental Impacts of Machine Learning on Microcontrollers

Brian Plancher Barnard College, Columbia University <u>brianplancher.com</u>



Copyright (c) 2023 TinyMLedu.

Is TinyML Sustainable?

Assessing the Environmental Impacts of Machine Learning on Microcontrollers

Applications of TinyML for Sustainability

TinyML Show and Tell

15:00 Day Opening 5'

- 15:05 Selected Show and Tell Talks 5' Speaker: Brian PLANCHER (Barnard College, Columbia University, USA)
- 15:10 Smart Poultry Farm: Tinyml-Based Disease Detection System Through Audio Signal 20' Speaker: Segun ADEBAYO (Bowen University, Nigeria)
- 15:30 Leveraging TinyML for Tracking Eidolon Helvum Movement Pattern and Forage Technique 20' Speaker: Oluwatobi Halleluyah AWORINDE (Bowen University, Nigeria)
- 15:50 Developing a "personal trainer" with TinyML 20' Speaker: Ricardo CARMO (Federal University of Itajubá, Brazil)
- 16:10 Sleep Apnea Detection System Using 20' Speaker: Helen Neena GOVEAS (BITS Pilani, K K Birla Goa Campus, India)
- 16:30 Rainfall estimation using Audio Monitoring and TinyML 20' Speaker: Blessed GUDA (Carnegie Mellon University, Nigeria)
- 16:50 Development of a TinyML Framework for Crop Disease Classification Tasks on Constrained Embedded Devices 20'

Speaker: Rehema Hamis MWAWADO (Sokoine University of Agriculture, Tanzania)

17:10 Word recognition in Kichwa using audio and low-power devices: a machine learning approach for alert applications 20'

Speaker: Karina ORTEGA AVILÉS (Escuela Superior Politécnica del Litoral, Ecuador)

- 17:30 DTMF Demodulation: A Brief Investigation of Machine Learning for Digital Signal Process 20' Speaker: Umar Hadiza YUSUF (Carnegie Mellon University, Nigeria)
- 17:50 Day Closing 10'

Zero Hunger & Good Health and Well-Being (SDG #2 & #3)

Credit: PlantVillage Nuru

Nuru, an ML app more accurate than humans at detecting plant diseases. Increased a farmer's sales by 55% & **yields by 146%**.

Credit: Crop Angel Ltd

Tiny drones can provide targeted pesticide applications that **reduce use to 0.1%** of conventional blanket spraying.

Credit: Sinhyu/Getty Images

Using Edge Impulse, a system was prototyped to identify mosquitoes by wing beats sounds with **88.3% accuracy**.

Life on Land & Below Water (SDG #14 & #15)

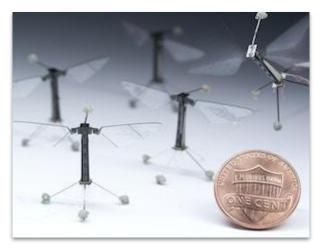
Credit: Rainforest Connection

Rainforest Connection uses recycled smartphones for solar-powered listening devices to warn of deforestation efforts

Credit: RESOLVE and Bivash Pandav

RESOLVE's AI camera transmits notifications of elephant detection and can **run for more than 1.5 years** on a single battery.

Credit: Tim Cole


To prevent collisions with whales in busy waterways, Google deployed a TinyML model on hydrophones to alert ships.

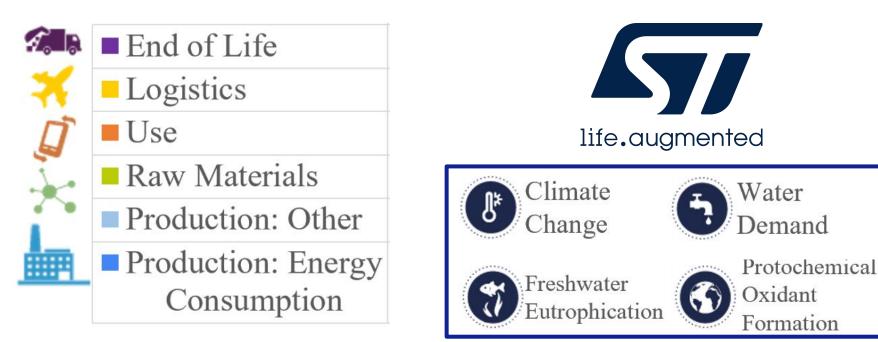
Climate Action (SDG #13)

Credit: Ribbit Network

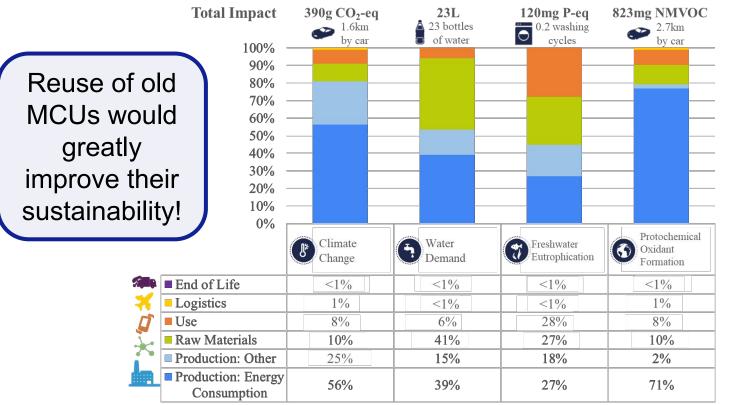
Ribbit Network is **crowdsourcing world's largest greenhouse gas emissions dataset** through distributed intelligent sensors

Credit: Wyss Institute at Harvard University

TinyML can help provide intelligence to **tiny robots like the Robobee** that can be used as artificial pollinators.

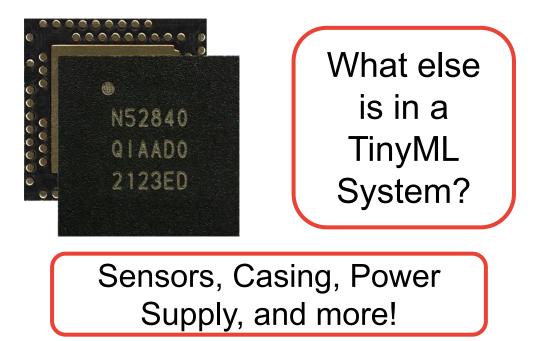


Credit: Google Nest

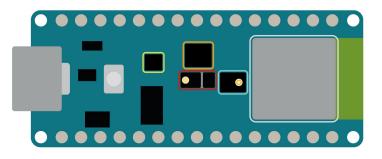

Smart HVAC systems show a 20-40% reduction in building energy usage.

Environmental Impact of an Individual MCU

How might you be able to quantify the environmental impact of an MCU?

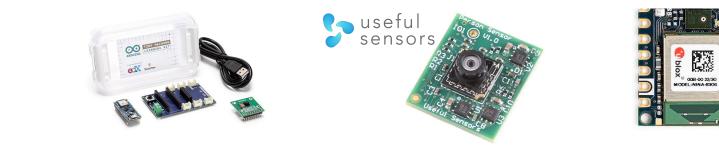

Energy Consumption During Production Dominates the Small Footprint

11

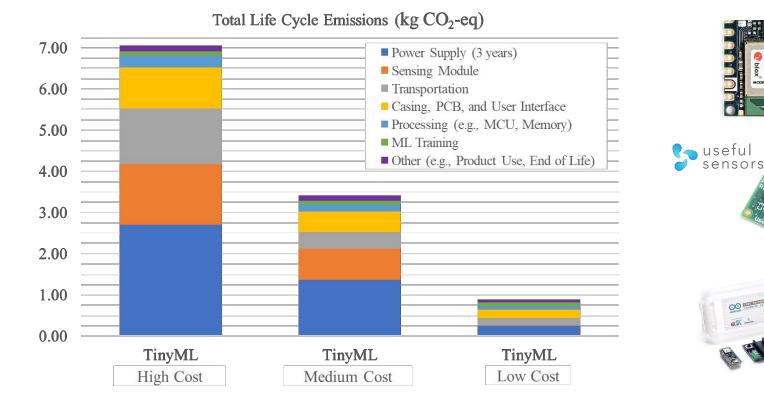

Environmental Footprint of TinyML Systems

Real TinyML Systems are more than just an MCU!

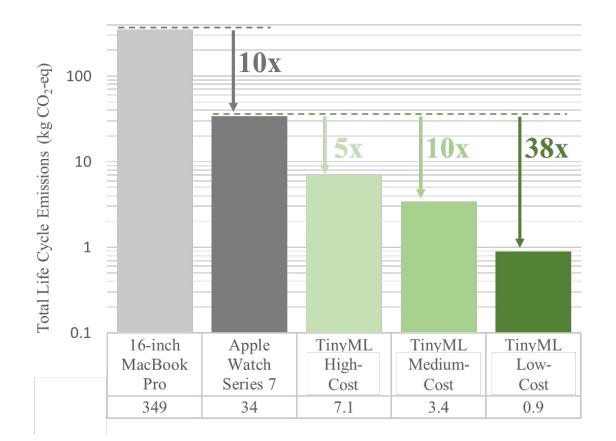
Real TinyML Systems are more than just an MCU!



- Color, brightness, proximity and gesture sensor
- Digital microphone
- Motion, vibration and orientation sensor
- Temperature, humidity and pressure sensor
- Arm Cortex-M4 microcontroller and BLE module


Building Representative Systems

Cost Level	High Cost	Medium Cost	Low Cost	
Application	Image (Image Classification		
Size	Large	Compact	Compact	



16

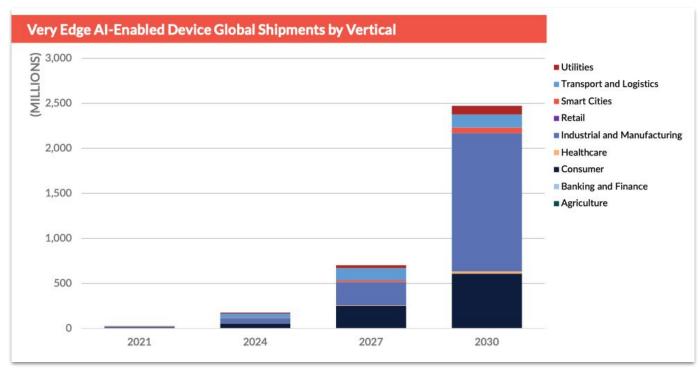
Building Representative Systems


TinyML Systems in Context

5x to 38x Savings over a 3-year lifespan!

harvard-edge.github.io/TinyML-Footprint/

TinyML CO₂ Footprint Calculator

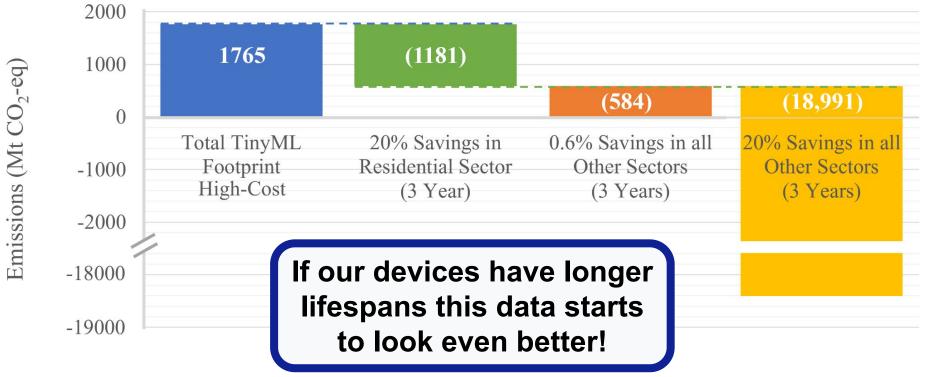


Vision	Anomaly Detection		
Classifier/Features	Autoencoder		
/ML 🌣			
ML Training			
DenseNet	MobileNetV1	Custom	
0.10 kg CO2e	1.00 kg CO2e	Enter value	
		Custom	ML Training kg CO2e
			VIL Haining kg GOZe
Casing			
ABS 200g/Steel 20g	ABS 400g/Steel 80g	ABS 700g/Steel 300g	Custom
0.04 kg CO2e	0.27 kg C02e	0.63 kg CO2e	Enter value
			Casing kg CO2e
			basing kg 002e
Processing			
MCU 5 mm*	MCU 10 mm*	MCU 17 mm*	Custom
0.08 kg CO2e	0.17 kg CO2e	0.29 kg CO2e	Enter value
		Custom F	Processing kg CO2e
PCB			
HSL-0 small	HSL-0 typical	HSL-0 large	Custom
0.13 kg CO2e	0.16 kg CO2e	0.24 kg CO2e	Enter value
			PCB kg CO2e

TinyML at Scale

TinyML Market Forecast

Source: ABI Research: TinyML

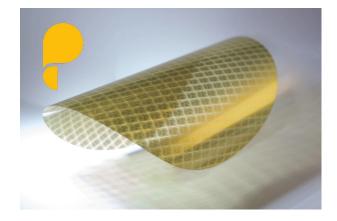

How many TinyML Devices are there?

There are around **250bn MCUs** deployed today and around **15bn IoT** devices

IoT Device Growth								
	~15 Billion	>50 Billion	>100 billion	>250 Billion	>1 Trillion			
Linear	2023	2041	2067	2144	2531			
Exponential	2023	2032	2036	2043	2053			

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

What if we scale to 250bn devices?


Limitations and Areas for Future Study

What about the net impact of factors **beyond carbon**?

What about **Jevons' Paradox**?

What about the **human costs**?

How can **emerging technologies** help?

Is TinyML Sustainable? Assessing the Environmental Impacts of Machine Learning on Microcontrollers

https://arxiv.org/abs/2301.11899

