[hpssjellis / tinyMLjs Public
<> Code () Issues 9 Pullrequests () Actions [Projects () Security

¥ main ~

tinyMLjs | ictp2023presentation.md
m hpssijellis Update ictp2023presentation.md O

Lx 1 contributor

¢ICTP Presentation July 2023 by
Jeremy Ellis about tinyMLjs

Version 0.2.0-7

& qrcode

Next Page

Finding the fun, while teaching machine learning with microcontrollers to
the general population.

QR Code is for this link
https://hpssjellis.github.io/tinyMLjs/public/acceleration/a00-best-
acceleration.html To the main acceleration TinyMLjs webpage

TinyMLjs by Jeremy Ellis. My Github Profile at
https://github.com/hpssjellis

= 394 lines (260 sloc) 10.2 KB

@ Introduction

Next Page

1. When | heard of the ICTP Workshop on Widening Access to TinyML
Network by Establishing Best Practices in Education, | was eager to

connect with like-minded educators who could collaborate on
creating an engaging method for teaching machine learning on
microcontrollers to a wider audience.

2. By "fun," I mean an approach that is open-source, powerful, fosters a
passion for learning, enables building proof of concepts, affordable,
fast, user-friendly, operates on the client-side, ensures security,
covers the entire process, supports future edge devices, is hardware
and internet/cloud independent.

¢ About-Me
Next Page

1.

| am Jeremy Ellis, known online as @rocksetta, jerteach, or hpssijellis.

As an unconventional learner, | am self-taught in machine learning
but probably have no chance of a PhD. My strength lies in simplifying
technology.

. Around 2017 | made a machine learning curriculum based on
TensorflowdJS, but deprecated it when | found out about
Edgelmpulse.com

. My Robotics course is called Maker100 based on the Arduino
PortentaH7 with LoRa vision Shield and the corresponding
PortentaH?7 library is called the Portenta Pro Community Solutions
with over 100 of my examples relevant to my course.

. With 48 years of computer programming experience, 35 years of
teaching high school coding, 30 years of obsession with coding
neural networks, and 8 years of teaching robotics and TensorflowJS
on microcontrollers (the last 3 using Edgelmpulse.com), the only
constant in my journey has been the deprecation of my work.

. The only consistent thing about teaching coding for that many years
is the amount of times all my work has been deprecated! It doesn't
matter if the cloud platform has been sold: (Cloud9 to AWS) or the
software has been updated: (Too many to mention), or the IDE has
changed (Arduino IDE 1.8.19 to 2.10), the board has changed (too
many to mention) the software has changed (Python 2 to Python 3),
and each deprecation destroys any relevant lesson plans or videos.

. One of the methods that has been reasonably stable is Javascript,
mainly because it's script tag can be versioned

<script
src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@4.8.0">
</script>

. However, converting TensorflowJS machine learning to
microcontrollers has been a challenge. Although | managed to

accomplish it years ago here (though it may be deprecated now), it
may no longer be necessary. If data from any hardware can be saved
as a CSV file, it can later be loaded onto any cloud platform.

& Progress
Next Page

1. At the start of June 2023 | had successfully implemented desktop
webSerial/polyfill (also works on Android Pixel Phones) and achieved
functionality for saving microcontroller data to CSV files. | also
experimented with using coPilot, chatGPT, and BingChat.

2. In summary, | accomplished in a much shorter timeframe what |
initially believed would take a year. On a webpage, we can now load
raw CSV data or data directly from a connected microcontroller using
the println() command to a desktop or laptop computer. We can
clean the data if necessary, convert it to a tensor, train a machine
learning model, load more data, clean and classify it, and finally send
the classification results back to the microcontroller (e.g., turning on
an LED, etc).

3. All this functionality is encapsulated in approximately 1000 lines of

code on a single webpage, allowing for quick testing of machine
learning viability with any sensor data from any microcontroller.

4. Since CSV files can be saved, you can now load that data onto your
favorite cloud platform, such as Edgelmpulse.com, for
microcontroller programming.

& tinyMLjs-csv
Next Page
Let's have a look at sections of the webpage:

Click choose Files to select CSV files. Currently, the file name is
important, and there are no column headings—just raw, cleaned data.

Version 0.36.7-134 Note: works on Chrome or Edge for Mac, Android (pixel Phones) or Windows, only on Edge for Linux

tinyMLjs

Upload from a raw CSV file or an Arduino style microcontroller using webSerial (Android Pixel phones also work) or
your cell phone motion sensor. Keep the raw sensor data then Machine Learning train a tensorflowJS model for export
or for live classification all on this single vanilla Javascript webpage!

Show: @ eeeeeeeee Hide: O wmeeeeeeeee No file chosen
Following is the list of actual labels used in the same order as uploaded (comma-separated) Note: expecting files to be
named: "name-lable.csv" or "name-lable (1).csv" ete.

CSV Lables (careful): | |
Senses Labels (careful): |]

& tinyMLjs-tensor

Next Page

Information here about number of samples, and sensors. Click Convert
Data to Tensor then Train Model . View console ctrl-shift-i for any
issues

Here we can save the model or upload a previously saved model. Note:
Labels are not loaded with the model. This is a work in progress.

Machine Learning models often need very specific data.
[Clean, Trim or Fill All | Count CSV: |0 Count Senses: [0 |Count Total: [0 |

Number of Samples/count: |25 | Number of Senses/sample: |1 |

[Convert Datato Tensor |
Enter number of epochs: | 100 |. Learning rate: [0.0005 \
‘ Train Model || Just Fit - retrain I

[Export Model | [my-model |...

Select model file: | Choose File | No file chosen
Select weights file: | Choose File | No file chosen

| Upload Model

@ Vision-Model
Next Page

This section focuses on tuning a vision model.

model tf.sequential();
model . add(tf.layers.conv2d({

inputShape: [minWidth, minHeight, 3],

activation: ‘relu’
)
model.add(tf. maxPooling2d({poolSize: 2}));
model.add(tf. .conv2d({kernelSize: filters: activation:
model . add(tf.1a) .maxPooling2d({poolSize: 2}));
model.add(tf.laye conv2d({kernelSize: 3, filters: 3 activation:
model.add(tf.1a) .maxPooling2d({poolSize: 2}));
model.add(tf.layers.conv2d({kernelSiz 3, filters: activation: ‘relu
model.add(tf.layers.maxPooling2d({poolSize: 2}));
model.add(tf.layers.conv2d({kernelSize: 3, filters: 3 activation:
model.add(tf.layers.flatten({}));
model.add(tf.layers.dense({units: 64, activation: 'relu’'}));

model.add(tf.layers.dense({units: uniquelabels.length, activation: ‘softmax'}));

const myRate = parseFloat(document.getElementById('myLearningRate"’).value)

model . compile({

optimizer: tf.train.adam(myRate),
loss: 'categoricalCrossentropy’,
metrics: ['accuracy']

1)s

¢ Sound-Model
Next Page

Here, we can tune a sound model.

function buildModel() {
model = tf.sequential();
model .add(tf.layers.depthwiseConv2d({
depthMmultiplier: 8,
kernelSize: [NUM_FRAMES, 3],
activation: ‘relu’,
inputShape: INPUT SHAPE
1)s
model .add(tf.layers.maxPooling2d({poolSize: [1, 2], strides: [2, 2]}));
model.add(tf.layers.flatten());

model .add(tf.layers.dense({units: 3, activation: 'softmax'}));

const optimizer = tf.train.adam(0.01);
model .compile({

optimizer,

loss: 'categoricalCrossentropy’,

metrics: [‘'accuracy']

1)
}

& Sensor-Model

Next Page

This section demonstrates the model for acceleration or any other sensor
combination.

model = tf.sequential();

model.add(tf.layers.lstm({units: 8, inputShape: [myModelSamples, myModelSenses] }));

add(tf.layers.dense({ units:
add(tf.layers.dense({ units: 30 }));

add(tf.layers.dense({units: uniquelabels.length, activation: ‘softmax'}));

st myRate = parseFloat(document.getElementById(mylLearningRate").value)
compile({
optimizer: tf.train.adam(myRate),
loss: ‘categoricalCrossentropy’,

metrics: ["accuracy’]

& tinyMLjs-webSerial
Next Page

Here is where we connect a microcontroller Connect via Serial Port
Then Clear and send Start

If needed clean the data and check the label name and Keep and/or
Save CSV checking the file name.

When using more than two labels, you can return to the model training
part of the webpage to train your model.

[Connect via Serial Port |
lstart || send |

| send 'a' LED On or Off | | send 'b' LED Off or On |
| Clear and send 'start || send 'stop' || Clear || send 'firstline’ || send 'start only || fancy1 || fancy2 |

Cell Phone: Motion

| Clean, Trim or Fill || 1label || Keep |
| Save CSV || myCSV-myLabel.csv

-1.97,-1.45,9.26
-1.97,-1.45,9.26
-1.96,-1.44,9.26
-1.97,-1.44,9.27
-1.97,-1.45,9.29
-1.97,-1.46,9.27

| Show Graph || Clean, Trim or Fill || Classify Data || Show All Data |
Number of Samples:23

& tinyMLjs-Chart
Next Page

Now it is time to test your model. Load more data, clean if needed and
click Classify Data

Note that the code to be loaded onto the Nano33BleSense (Rev1) is
displayed in the textarea for easy copying.

[Show Graph || Clean, Trim or Fill || Classify Data | [Show All Data |
Number of Samples:25

O}
Chart
1ol\
jﬂ i -—::::===\\\\ ‘//'--._-~______,—" ~_
g N\ A \/‘\A\M—
-10]
0 5 10 15 20

Time (ms)

Aruino Nano33BleSense webSerial code that can be adapted for other microcontrollers

The "fancy" Arduino sketch is on the github here https:/github.com/hpssjellis/tinyML js/blob/main/public/acceleration/a00-accell-nano33-
fancy.txt

r* 2

* webSerial for testing javascript connection with an arduino
*

* Latest work at https://github.com/hpssjellis/webMLserial v
*

@ tinyMLjs-Gotchas

Next Page

Use at your own risk!

By Jeremy Ellis @rocksetta

Github at https:/github.com/hpssjellis/tinyMI js/tree/main

Demo's Index at https://hpssjellis.github.io/tinyMI js/public/index.html

A couple of gotchas (as of Jun 22, 2023):

—

. File names have to be in the format "name-lable.csv" or "name-lable (1).csv" or "name-lable (2).csv" etc. Unfortunately Android and

iPhone don't auto make the numbering for you.

Android and Apple device have an opposite orientation. so I have made negative all the android motion data so when your phone is on

a table z=-9.8 m/s"2 etc. When looking veritacally at your phone y = -9.8 m/s"2. The auto detect of this only works if an Android

phone is in mobile format not "desktop site”

. Real data has lots of rough data, machine learning models do not like missing data. If your results show "NaN" either your training
data or classification data has errors. Note: If the loss is not changing your trained data probably has errors. The "clean,trim.fill"
buttons might help.

4. Presently a CSV label upload bug happens sometimes. Easy to fix by entering the correct labels in the correct order. I will try to fix the

issue when I figure out what is causing it.

[]

w

@ Conclusion
Back to the top
Tutorial playlist Video here

Direct link https://youtu.be/3f4led32SL8

*Untitled - Notepad = a X

) hpssiellis/tingMLjs: Clic X @ hpssjellis.github.io/tingy X | @ Acceleration Datato - X | +
File Edit Format View Help

C (O @ github.com/hpssjellis/tinyMLjs/tree/main C e x 0O Q HllIhttps://github.com/hpssjellis/tinyMLjs

Proof of concept machine learning

ted with Ar.. @B 13 Factors: Addressi.. @ Machine Learning S.. [B 2023 In Person4D... @ pS,js Web Editor | p .
for microcontrollers connected to a

started
computer using webSerial.
O hpssjellis / tinyMLjs 5

Code Issues Pull requests *) Actions Projects Security

@ tinyMLjs Pin Uneeh

Go to file Add file ~ <> Code + About

Iy o Client side, single file webpage T arees siais -
tools using javascript based
tensorflowjs for full control Machine

(J) hpssjellis Update index.html ...

Learning using microcontrollers
backups &
public
LICENSE
README.md

ictp2023pres...

i tinyMUjs-mainzip ~ showall X

The github is at: https://github.com/hpssjellis/tinyMLjs

The index webpage is at
https://hpssjellis.github.iof/tinyMLjs/public/index.html

While this presentation represents a starting point, it demonstrates that
powerful, proof of concept, end-to-end machine learning on edge
devices does not have to rely on the cloud or specific hardware. It can be
done in the field or in a classroom without internet access.

By Jeremy Ellis @rocksetta

Github Profile at https://github.com/hpssjellis

Back to the top

