Overview of research and development in the domain of IoT + ML@edge

Dr Milan Lukic, assistant professor Faculty of Technical Sciences, University of Novi Sad, Serbia

127.0.0.1

FTN (EE + CS department) and Technology Park

Novi Sad, Serbia

Dream team - ICONIC centre

About myself

- Teaching university courses in Electronics Fundamentals, Embedded Systems, Robotics and IoT since 2005
- Defended PhD thesis in WS(R)N (2015)
- Things I do for living, including but not limited to:
 - HW/SW co-design: PCB design + FW development
 - Sensors and actuators in mechatronics/robotics and IoT
 - IoT @edge: emphasis on LPWAN (LoRaWAN and NB-IoT)
 - IoT @server/cloud: Frontend + Backend+ DB design
 - Lightweight ML @edge
- Things I do for fun: features of low relevance for this presentation, therefore excluded in order to simplify the model

Challenges and motivation for TinyML

Principles of efficient and scalable IoT design:

- Ultra low-power HW
- Low-throughput communication
- Size matters!
- Security is mandatory

ML @edge motivation:

- Reduce comunication overhead
- Offload the work from the cloud by distributing the inference
- Fine-tune ML models to suit individual use cases

Implementation Flow:

- Create the dataset
- Properly label the dataset a huge challenge!
- Training might be cumbersome, inference must be tiny => <u>NO PYTHON @EDGE!!!</u>
- Reduce the footprint of ML models without compromising the performance

	Energy (J)		Time (ms)		Mb
(c) C	1.00	(c) C	1.00	(c) Pascal	1.00
(c) Rust	1.03	(c) Rust	1.04	(c) Go	1.05
(c) C++	1.34	(c) C++	1.56	(c) C	1.17
(c) Ada	1.70	(c) Ada	1.85	(c) Fortran	1.24
(v) Java	1.98	(v) Java	1.89	(c) C++	1.34
(c) Pascal	2.14	(c) Chapel	2.14	(c) Ada	1.47
(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.54
(v) Lisp	2.27	(c) Pascal	3.02	(v) Lisp	1.92
(c) Ocaml	2.40	(c) Ocaml	3.09	(c) Haskell	2.45
(c) Fortran	2.52	(v) C#	3.14	(i) PHP	2.57
(c) Swift	2.79	(v) Lisp	3.40	(c) Swift	2.71
(c) Haskell	3.10	(c) Haskell	3.55	(i) Python	2.80
(v) C#	3.14	(c) Swift	4.20	(c) Ocaml	2.82
(c) Go	3.23	(c) Fortran	4.20	(v) C#	2.85
(i) Dart	3.83	(v) F#	6.30	(i) Hack	3.34
(v) F#	4.13	(i) JavaScript	6.52	(v) Racket	3.52
(i) JavaScript	4.45	(i) Dart	6.67	(i) Ruby	3.97
(v) Racket	7.91	(v) Racket	11.27	(c) Chapel	4.00
(i) TypeScript	21.50	(i) Hack	26.99	(v) F#	4.25
(i) Hack	24.02	(i) PHP	27.64	(i) JavaScript	4.59
(i) PHP	29.30	(v) Erlang	36.71	(i) TypeScript	4.69
(v) Erlang	42.23	(i) Jruby	43.44	(v) Java	6.01
(i) Lua	45.98	(i) TypeScript	46.20	(i) Perl	6.62
(i) Jruby	46.54	(i) Ruby	59.34	(i) Lua	6.72
(i) Ruby	69.91	(i) Perl	65.79	(v) Erlang	7.20
(i) Python	75.88	(i) Python	71.90	(i) Dart	8.64
(i) Perl	79.58	(i) Lua	82.91	(i) Jruby	19.84

The global results (on average) for Energy, Time, and Mb normalized to the most efficient language in that category. Source: <u>Pereira, et al. (2021)</u>

Our babies <3

On-board sensors: Quectel BG96: NB-IoT + LTE-M + · Air temperature, pressure and humidity EGPRS + GNSS GNSS · Ambient light Multi-band GSM antenna antenna ANT1

- 6-axis IMU (accelerometer + magnetometer)

Crypto chip:

- SHA-256
- ECC NIST P256/P384 (sign.) verify, key generation, and ECDH(E))
- RSA® 1024/2048 (sign, verify, key generation, encrypt and decrypt)
- key derivation (TLS v1.2 PRF)

MCU:

- ARM Cortex M0+ MCU @16MHz ٠
- 256KB of FLASH program memory
- 32KB of SRAM

NB-IoT node v2

NB-IoT node v1

3GPP NB-IoT testbed

- Static Testbed: 80 NB-IoT devices with various sensors (T/H/P, illumination, etc.) for Smart Building applications (H2020 SENSIBLE)
- Mobile Testbed: 50 NB-IoT devices with GPS/accelerometers for Smart Logistics applications (H2020 C4IIoT)

Challenge #1: Estimating Energy Consumption of NB-IoT Modules

Testing and Data Gathering in NB-IoT network

2) Complete UE-eNB Message Exchange Log

Unexpected plot twist

NB-IoT enabled indoor localization

Publications (1)

Already published:

In-depth Real-World Evaluation of NB-IoT Module Energy Consumption M Lukic, S Sobot, I Mezei, D Danilovic, D Vukobratovic 2020 IEEE International Conference on Smart Internet of Things (SmartIoT)

3GPP NB-IoT for Smart Environments: Testbed Experimentation and Use Cases M Lukic, S Sobot, I Mezei, D Vukobratovic IEICE Proceedings Series 64 (ICTF2020_paper_27)

Secured by hardware client-server communication based on NB-IoT technology D Bortnik, V Nikić, M Lukić, I Mezei 2021 Zooming Innovation in Consumer Technologies Conference (ZINC)

Firmware Updates Over The Air Using NB-IoT Wireless Technology V Nikic, D Bortnik, M Lukic, I Mezei 2021 29th Telecommunications Forum (TELFOR)

Comparisons of firmware delta updates over the air using WLAN and LPWAN technologies V Nikic, D Bortnik, M Lukic, D Danilovic, I Mezei 2022 30th Telecommunications Forum (TELFOR)

Two-Tier UAV-based Low Power Wide Area Networks: A Testbed and Experimentation Study S Sobot, M Lukic, D Bortnik, V Nikic, B Lima, M Beko, D Vukobratovic 2023 6th Conference on Cloud and Internet of Things (CIoT)

In preparation:

- ML estimator of NB-IoT module power consumption based on radio parameters
- Indoor NB-IoT device localization based on radio fingerprinting

Challenge #2: H2O2O C4lloT - Cyber security in Industrial IoT

Deep Autoencoder Anomaly Detection in Smart Logistics

- NB-IoT device collects IMU data from logistics containers and uses anomaly detection to flag unusual behavior
- ML-based anomaly detection across three layers: Edge device, Fog Gateway and Cloud

Sampling vs Delay at ADM-EDGE and ADM-FOG

- ML-EDGE provides immediate decisions after each data fast response time
- ML-FOG uses more powerful design (longer feature vector, complex architecture)
- NB-IoT uplink can be a bottleneck and cause unpredictable delays
- ML-EDGE module has access to raw data
- ML-FOG gets access to data aggregated by ML-EDGE in order to reduce communication load
- The final decision at the system level is achieved in coordination of ML orchestration engine

Example results: ADM-EDGE vs ADM-FOG

- ML-EDGE single data point, single hidden layer
- ML-FOG k data points, three hidden layers
- Dropout, L2 and combined regularization
- Compared by Precision, Recall and F1
- Time delay of ML-FOG depends on k TABLE I: Evaluation of ML-EDGE autoencoders.

	Precision	Recall	F_1
ML-EDGE-Base	0.7047	0.6897	0.6971
ML-EDGE-Dropout	0.7349	0.6769	0.7047
ML-EDGE-L2	0.7926	0.6821	0.7332
ML-EDGE-Dropout-L2	0.7661	0.6821	0.7216

Publications (2)

Deep Learning Anomaly Detection for Cellular IoT with Applications in Smart Logistics

M Savic, M Lukic, D Danilovic, Z Bodroski, D Bajovic, I Mezei, D Vukobratovic, S Skrbic, D Jakovetic

IEEE Access 9, 59406-59419

Cybersecurity 4.0 Industrial Internet of Things: Architecture, Models and Lessons Learned

G Bravos et al.

IEEE Access 10, 124747-124765

Challenge #3: NB-IoT Devices for Digit Recognition

NB-IoT + CAM node architecture

ESP32 MCU:

- 32-bit dual core
- 240MHz
- 520KB SRAM
- 8MB FLASH)

Communication:

- Quectel BG96 (NB-IoT + LTE-M + GPRS)
- WiFi + Bluetooth Classic + BLE (integrated within ESP32)

Camera:

• OV5640 5 Megapixel

SD card for local data logging

50++ shades of gray

- Picture resolution 17x25
- Using grayscale pictures -> reduction from 24 to 8 bits/pixel
- Transforming to B/W -> reduction from 8 to 1 bit/pixel
- One threshold to rule them all? -> **BAD IDEA**

X

5

TH = 128

Cleaning up the mess

- Transformation to B/W -> k-means clustering, k=2
- Eliminating artifacts -> coloring algorithm
- Improvement: merge differently colored areas that have pixels touching in corners
- After preprocessing, the NN for digit recognition achieved >98% of accuracy

To transmit or not to transmit, that is the question...

Challenge #4: Detection of fungal disease outbreak risk in agriculture

Grapevine Downy Mildew Warning System Based on NB-IoT and Energy Harvesting Technology I Mezei, M Lukić, L Berbakov, B Pavković, B Radovanović Electronics 11 (3), 356

Algorithm for primary infection alarms

Algorithm for secondary infection alarms

Thank You! Grazie! Хвала! 谢谢你! Merci ! Danke ! ¡Gracias!