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Marcelo Rovai

• Brazilian from São Paulo, Data Science Master’s degree by UDD, Chile, 
and MBA by IBMEC (INSPER), Brazil. 

• Graduated in 1982 as an Engineer from UNIFEI with Specialization from 
Poli/USP, both in Brazil.

• Worked as a teacher, engineer, and executive in several technology 
companies such as CDT/ETEP, AVIBRAS Aeroespacial, SID Informática, 
ATT-GIS, NCR, DELL, COMPAQ (HP), and more recently at IGT as a 
Regional VP, where continue as a Senior Advisor for Latin America.

• Write about electronics, publishing in sites as MJRoBot.org 
(Editor/Writer), Hackster.io (#1 Contributor), Instructables.com, and 
Medium.com (TDS – Towards Data Science).

• Volunteer Professor at UNIFEI Engineering Institute, teaching  
“Machine Learning applied to Embedded Devices” course (IESTI01). 

• Active member of the TinyML4D group, an initiative to bring TinyML 
education to developing countries.

Who I am
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Case Study: Mechanical Stresses in Transport
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Mechanical Stresses in Maritime Transport

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.html

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm


Mechanical Stresses in Maritime Transport
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Example: 10 seconds of accelerometer data,  captured with a sample rate: 62.5 Hz
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Problem!
✔ Time-Series Data



 Window

ms



• 125** samples for each axis (62.5Hz x 2s)
• 375 total features (125 x 3 axis) 

Raw Features as a window

*

*   2 seconds is needed to capture 1 or 2 cycles of movement
** 2 seconds at sample rate of 62.5 Hz -> 125 samples 

ms



• 125** samples for each axis
• 375 total features 

Raw Features as a window

• Computational complexity 
• Lots of training data

*   2 seconds is needed to capture 1 or 2 cycles of movement
** 2 seconds at sample rate of 62.5 Hz -> 125 samples 

*

Automatic Feature Extraction using DL

ms

Problem!
✔  More Memory
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Manual Feature Extraction2 seconds 

3 RMS (Root Mean Square) values 

      - one for each axis (x, y, z)

125



Manual Feature Extraction2 seconds 

3 RMS



Fast Fourier Transformer (FFT)

Raw Signal 

Time Domain
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Fast Fourier Transformer (FFT)
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Fast Fourier Transformer (FFT)

Raw Signal 

Comp. 2 – 4 KHz

Comp. 1 – 400 Hz

A1

A2

Time Domain

from scipy.fft import fft
yf = fft(raw signal)
plt.plot(xf, np.abs(yf));

Comp. 1

Comp. 2

Frequency Domain



Manual Feature Extraction2 seconds 

3 RMS



Manual Feature Extraction2 seconds 

3 RMS

Height peak

Frequency peak

9 Height  +  9 Freq. peak values 



4 Frequency bins per axis

Manual Feature Extraction2 seconds 

https://blog.endaq.com/why-the-power-spectral-density-p
sd-is-the-gold-standard-of-vibration-analysis
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Frequency beans
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3 RMS  + 9 HP + 9 FP + 12 PSD values 

https://blog.endaq.com/why-the-power-spectral-density-psd-is-the-gold-standard-of-vibration-analysis
https://blog.endaq.com/why-the-power-spectral-density-psd-is-the-gold-standard-of-vibration-analysis


• Raw Data from sensor
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• Raw Data from sensor

375 Raw Features
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Model Design (NN Classifier)
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Model Design (DNN Classifier)
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Train, Evaluate, Convert, Deploy the Model 



Collect 
Data

Preprocess
Data

Design a
Model

Train a
Model

Evaluate
Optimize

Convert
Model

Deploy
Model

Make
Inferences

Machine Learning Workflow



EI Studio - Embedded ML platform



Motion Classification
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Motion Classification

circle

Transportation Classes
• lift (up-down)
• terrestrial (left-right)
• maritime (zig-zag, etc.)
• idle

Data: collect & test using 
accelerometer as sensor



• Pre-Processing Data
• Design a Model
• Train a Model



Sensor - IMU (Inertial Measurement Unit)





• Pre-Processing Data
• Design a Model
• Train a Model







Depending on your 

mobile OS version 

and/or your Browser, 

could be necessary to 

give access to device 

IMU sensor
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Original Dataset

Training Set Test Set

Training Set Test SetValidation SetCollect 
Data
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• Pre-Processing Data
• Design a Model
• Train a Model
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• Pre-Processing Data
• Design a Model
• Train a Model
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• Pre-Processing Data
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Motion Classification - Summary
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Anomaly Detection 











Ball Bearings

Accelerometer





It’s too expensive to stream to the cloud







Machine working well 
 Class 1 

Machine working well 
 Class 2 

Machine NOT 
working well 
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Possible Scientific uses of TinyML on 
Real Life



Using the Internet of Things for Agricultural Monitoring
“We aim to deploy a variety of sensors for agricultural monitoring. One of the projects involves using accelerometer sensors to 
monitor activity levels in dairy cows with a view to determining when the cows are on heat or when they are sick.”

https://sites.google.com/site/cwamainadekut/research

Cow Monitoring

Kenia



iBean
Detecting Diseases in the Bean plants

UGANDA





Training, Test  and Validation data based 
on 224x224 pixel color images taken of 
bean plants in Uganda. 

Goal: 
To build a neural network that can tell the 
difference between the healthy and diseased 
leaves.

Dataset: 

Dataset: https://github.com/AI-Lab-Makerere/ibean/

iBean Dataset 

https://github.com/AI-Lab-Makerere/ibean/


Training, Test  and Validation data based 
on 224x224 pixel color images taken of 
bean plants in Uganda. 

Goal: 
To build a neural network that can tell the 
difference between the healthy and diseased 
leaves.

Dataset: 

Dataset: https://github.com/AI-Lab-Makerere/ibean/

iBean Dataset 

Problem!
Not a lot of 

data

https://github.com/AI-Lab-Makerere/ibean/


But what to do if we do not have more 
data?

• Data Augmentation (artificial)

• Transfer Learning



Data Augmentation (artificial) 

Data augmentation takes the approach of generating additional training data from your existing 
examples by augmenting them using random transformations that yield believable-looking 
images. This helps expose the model to more aspects of the data and generalize better (avoiding 
overfitting).

https://www.tensorflow.org/tutorials/images/data_augmentation


Using tf.image



Using tf.image



Transfer Learning



End Result of Training
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The end result of the training is to learn the weights of the neural network model.
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Source: Google



Transfer Learning
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Transfer Learning
Train only last 

few layers
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https://arxiv.org/pdf/1810.00736.pdf

https://arxiv.org/pdf/1810.00736.pdf


https://studio.edgeimpulse.com/public/51151/latest

Clone the 
Project 
(Public)

https://studio.edgeimpulse.com/public/51151/latest
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