SciTinyML: Scientific Use of Machine Learning on Low-Power Devices

Hands on Embedded ML (Vision and Audio)

Brian Plancher Harvard John A. Paulson School of Engineering and Applied Sciences brianplancher.com

1

Quick Disclaimer: Today will be both too fast and too slow!

Quick Disclaimer: Today will be both too fast and too slow!

Do you have experience in?

By the end of today: Hands-on Keyword Spotting

We will explore the science behind KWS and collect data and train our own custom model to recognize "yes" vs. "no" using Edge Impulse

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

Today's Agenda

Deep ML Background

How does (Deep) Machine Learning Work? Exploring Deep ML through Computer Vision

- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

What is Machine Learning?

Machine Learning is a 1. subfield of Artificial Intelligence focused on developing algorithms that learn to solve problems by analyzing data for patterns

What is (**Deep**) Machine Learning?

- Machine Learning is a subfield of Artificial Intelligence focused on developing algorithms that learn to solve problems by analyzing data for patterns
- Deep Learning is a type of
 Machine Learning that leverages
 Neural Networks and Big Data

if (speed < 4):
ng then walking

if (speed < 4):
 then walking</pre>

else: running data we can gather input: **speed** Write a **rule**

extend the rule

if (speed < 4): then walking

if (speed < 4): if (speed < 4): then walking

then walking

else: running else if (speed < 12): then running else: biking

?? WHAT IS THIS ??

if (speed < 4): then walking

else if (speed < 12): then running else: biking

if (speed < 4): if (speed < 4): then walking

> else: running

then walking

biking

Activation Function

What is a **neural network**? Y 1 neuron 0 **X**₁ Σw_ix_i+b **X**2 threshold 01 **X**₃ b artificial

Activation Function

What is a **neural network**? Y neuron \mathbf{O} **X**₁ Σw_iX_i+b **X**₂ threshold Хз b $\mathbf{Y} = \mathbf{\Sigma}\mathbf{w}_{i}\mathbf{X}_{i} + \mathbf{b}$ artificial So training the model is finding the right values for wand b

For a set of Input Data

For a set of Input Data

For a set of Input Data Guess the Answer and count mistakes Improve the model to be more correct

After it's **learned** use it for **inference**:

To learn more about the **math behind neural network training** there is a nice series of videos here: <u>https://www.youtube.com/playlist?list=PLZHQOb</u> <u>OWTQDNU6R1 67000Dx ZCJB-3pi</u>

artificial

Today's Agenda

Deep ML Background

How does (Deep) Machine Learning Work?

Exploring Deep ML through Computer Vision

- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

What color are the pants and the shirt?

Slide Credit: Hamilton Chong

Slide Credit: Hamilton Chong

Slide Credit: Hamilton Chong

Is square A or B darker in color?

What Features of the image might be important for self driving cars?

What **Features** of the image might be important for self driving cars?

Maybe straight lines to see the lanes of the road?
Colab Link

Features can be found with **Convolutions**

-1	0	1	
-2	0	2	
-1	0	1	

The ImageNet Challenge provided 1.2 million examples of 1,000 labeled items and challenged algorithms to learn from the data and then was tested on another 100,000 images

In 2010 teams had 75-50% error

In 2011 teams had 75-25% error

person hammer flower pot power drill

In 2012 still no team had less than 25% error barrier except AlexNet at 15%

AlexNet Paper

AlexNet Use convolutions to find features and the summarize them into higher level features 64 60 24 SoftMax 12 -> --5 10 384 192 384 60 256 4096 4096 64 Combine the features to classify the various objects in the dataset

A word of caution...

Ackerman "Hacking the Brain With Adversarial Images"

Today's Agenda

• Deep ML Background

Hands-on Computer Vision: Thing Translator

- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML

Summary

The Thing Translator

Open On Your Phone

https://thing-translator.appspot.com/

The Thing Translator

https://thing-translator. appspot.com/

Open On Your Phone

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator

• The Tiny Machine Learning Workflow

- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

What is Embedded Machine Learning (TinyML)?

The TinyML Workflow

The TinyML Workflow ("What")

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
 A Quick Primer on Data Engineering
 Hands-on KWS Data Collection with Edge Impulse
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

Keyword Spotting in One Slide

If we pick a simple task to only identifying a few key words we can then use a small model and train it with little data and fit it onto an embedded device

The TinyML Workflow

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
 A Quick Primer on Data Engineering
 Hands-on KWS Data Collection with Edge Impulse
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

Who will use your ML model?

- What languages will they speak?
- What accents will they have?
- Will they use **slang** or formal diction?

Who will use your ML model?

Where will your ML model be used?

- What languages will they speak?
- What accents will they have?
- Will they use slang or formal diction?
- Will there be **background noise**?
- How far will users be from the microphone?
- Will there be **echos**?

Who will use your ML model?

Where will your ML model be used?

Why will your ML model be used? Why those Keywords?

- What languages will they speak?
- What accents will they have?
- Will they use slang or formal diction?
- Will there be **background noise**?
- How far will users be from the microphone?
- Will there be echos?
- What tone of voice will be used?
- Are your keywords commonly used? (aka will you get a lot of false positives)
- What about false negatives?

> There are a lot more things to consider to eliminate bias and protect privacy when collecting data that we will talk about in future sessions!

ML model be used? Why those Keywords?

you get a lot of false positives)

• What about false negatives?

Tips and Tricks for Custom KWS

- Pick uncommon words for Keywords
- Record lots of "other words"
- Record in the **location** you are going to be **deploying**
- Get your end users to help you build a dataset
- Record with the same **hardware** you will **deploy**
- Always test and then improve your dataset and model

Tips and Tricks for Custom KWS

Today we are just working on a demo so to give our demo the the best chance of working we will:

1. Stay in one spot

(we're cheating)

- 2. Only record ourselves
- 3. Use common words (yes, no)
- 4. Only test ourselves

Data Engineering for KWS (Part 2) (how to test with our data)
Original Dataset				
Training Set	Test Set			

Original Dataset			
Training Set	Test Set		
Training Set	Validation Set	Test Set	

	Original Dataset						
	Training Set				Test Set		
	Training Set			Validat	tion Set	Test Set	
Training, tuning, evaluation		Machine Learning Algorithm					

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
 A Quick Primer on Data Engineering
 Hands-on KWS Data Collection with Edge Impulse
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML
- Summary

The TinyML Workflow using Edge Impulse

Create an Edge Impulse Account

1. Create an Edge Impulse account: https://studio.edgeimpulse.com/signup

2. Validate your email by clicking the link in the email sent to your account's email address

Start building embedded machine learning models today.

Activity: Create a Keyword Spotting Dataset

Collect ~30 samples each of the following classes of data:

- Keyword #1 "yes" (label: yes) (length: 2 seconds)
- Keyword #2 "no" (label: no) (length: 2 seconds)
- "Unknown" words that are not the keyword and background noise (label: unknown) (length: 2 seconds)

Dashboard

- Devices
- Data acquisition
- ✤ Impulse design
 - Create impulse
- 🧭 EON Tuner
- 🔏 🛛 Retrain model
- Live classification
- Model testing

Creating your first impulse (0% complete)

Acquire data

Every Machine Learning project starts with data. You can capture data from

or import data you already collected.

🗳 LET'S COLLECT SOME DATA

Design an impulse

Teach the model to interpret previously unseen data, based on historical data. Use this to categorize new data, or to find anomalies in sensor readings.

.

● smartphone.edgeimpulse.com ①

 \bigcirc

Connected as phone_kunh8zjd

You can collect data from this device from the **Data acquisition** page in the Edge Impulse studio.

● smartphone.edgeimpulse.com ①

 \bigcirc

Connected as phone_kunh8zjd

You can collect data from this device from the **Data acquisition** page in the Edge Impulse studio.

smartphone.edgeimpulse.com

Audio captured with current settings: 0s

Û

smartphone.edgeimpulse.com	Û
🔁 🎐 Data collection	
Label: goodbye Length: 3s.	
Category: split	
Start recording	
Audia contured with surrent cottings: Oc	
Audio captured with current settings. os	

💳 EDGE IMPULSE	DATA ACQUISITION (BRIAN_F	PLANCHER-PROJECT-1)			Brian_planch
	Training data Test dat	a		Rename		
DashboardDevices	1 Did you know? Yo	u can capture data	a from any device or	Edit label Move to test set	d y	your existing datasets - Show options X
 Data acquisition Impulse design 	DATA COLLECTED 1m 27s	٥	train / tes 86% / 1	Disable Crop sample Split sample		Record new data
Create impulse EON Tuner	Collected data			Download Download (.WAV)	:	No devices connected to the remote management API.
🗙 Retrain model	SAMPLE NAME	LABEL	ADDED	Delete		RAW DATA unknown.2hvfrhdt
A Live classification	unknown.2hvfrhdt	unknown	Today, 16:45:0	06 25	1	
Model testing	unknown.2hvfrd4u	unknown	Today, 16:45:0	02 2s	I	20000
₽ Versioning	unknown.2hvfr8a4	unknown	Today, 16:44:5	57 2s	:	10000
Deployment	unknown.2hvfqur4	unknown	Today, 16:44:4	17 2s	:	
GETTING STARTED	unknown.2hvfqr15	unknown	Today, 16:44:4	13 2s	1	-5000 -10000
Ø Documentation	unknown.2hvfqmr3	unknown	Today, 16:44:3	9 2s	:	0 208 416 624 832 1040 1248 1456 1664 1872
Sorums	unknown.2hvfqj1g	unknown	Today, 16:44:3	35 2s	1	
	unknown.2hvfq9bn	unknown	Today, 16:44:2	25 2s	:	► 0:00 / 0:00 → ··· · · ·

https://docs.edgeimpulse.com/docs/using-your-mobile-phone

Activity: Create a Keyword Spotting Dataset

Collect ~30 samples each of the following classes of data:

- Keyword #1 "yes" (label: yes) (length: 2 seconds)
- Keyword #2 "no" (label: no) (length: 2 seconds)
- "Unknown" words that are not the keyword and

background noise (label: unknown) (length: 2 seconds)

Also take a quick break! We'll resume in 10 minutes!

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training

Preprocessing (for KWS)

Hands-on Preprocessing and Training with Edge Impulse

Deployment Challenges and Opportunities for Embedded ML

Why might we want to **preprocess** data and not send the raw data to the neural network?

Can you tell these two signals apart?

Signal Components?

Signal Components?

Fast Fourier Transform: extract the frequencies from a signal

Fast Fourier Transform

Essentially if you stack up all the FFTs in a row then you get the Spectrogram (time vs. frequency with color indicating intensity)

Spectrograms help differentiate the data

Spectrograms help differentiate the data

Spectrograms help differentiate the data

Data Preprocessing: Spectrograms

Can we do **better** than a spectrogram?

Can we take **domain knowledge** into account?

Mel Filterbanks

Spectrograms v. MFCCs

Spectrograms v. MFCCs

No Loud

Additional Feature Engineering

WARNING: Whatever preprocessing you do on the computer in python for training you need to do in C++ on the microcontroller!

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training

Preprocessing (for KWS)

Hands-on Preprocessing and Training with Edge Impulse

Deployment Challenges and Opportunities for Embedded ML

R F Add a processing block	Reco	x ommended based on your inputs
DESCRIPTION	AUTHOR	RECOMMENDED
Audio (MFCC) Extracts features from audio signals using Mel Frequency Cepstral Coefficients, great for human voice.	EdgeImpulse Inc.	Add
Audio (MFE) Extracts a spectrogram from audio signals using Mel-filterbank energy features, great for non-voice audio.	Edgelmpulse Inc.	Add
Flatten Flatten an axis into a single value, useful for slow-moving averages like temperature data, in combination with other blocks.	EdgeImpulse Inc.	Add
Image Preprocess and normalize image data, and optionally reduce the color depth.	EdgeImpulse Inc.	Add
Spectral Analysis Great for analyzing repetitive motion, such as data from accelerometers. Extracts the frequency and power characteristics of a signal over time.	EdgeImpulse Inc.	Add
Spectrogram Extracts a spectrogram from audio or sensor data, great for non-voice audio or data with continuous frequencies.	Edgelmpulse Inc.	Add

We'll keep things simple today and just add an MFCC but/and in future projects you can:

- create your own blocks
- use multiple blocks

https://docs.edgeimpulse.com/ docs/custom-blocks

Add a learning block × Some learning blocks have been hidden based on the data in your project. DESCRIPTION AUTHOR RECOMMENDED ease Classification (Keras) EdgeImpulse Inc. 🔶 Add Learns patterns from data, and can apply these to new data. Great for categorizing movement or recognizing audio. **Regression** (Keras) EdgeImpulse Inc. Add Learns patterns from data, and can apply these to new data. Great for predicting numeric continuous values. Cancel

Add a processing block

Z)

MFCC (BRIAN_PLANCHER-PROJECT-1 #1 ▼ Click to set a desc Parameters Generate fea) cription for this version ^{tures}		Brian_plancher
Training set		Feature explorer	0
Data in training set	1m 24s	No features generated yet.	
Classes	3 (no, unknown, yes)		
Window length	1000 ms.		
Window increase	500 ms.		
Training windows	126		
	Generate features		

=	EDGE IMPULSE	MFCC (BRIAN_PLANCHER-PROJECT-1) #1 ▼ Click to set a description fo	or this version				💮 Brian_p	plancher
Q	Dashboard	Parameters Generate features						
	Devices Data acquisition	Training set		Fea	ature explorer (126 sam	iples)		0
~	Impulse design	Data in training set	1m 24s	x	Axis	Y Axis	Z Axis	
	Create impulse	Classes	3 (no, unknown, yes)	V	/isualization layer 1 🛛 🗸	Visualization layer 2 🗸 🗸	Visualization layer 3	~
	MFCC NN Classifier	Window length	1000 ms.	:	no unknown yes			
Ø	EON Tuner	Window increase	500 ms.					
*	Retrain model	Training windows	126		4	31° - 3° 4.		
ñ	Live classification				15Ualizat			
	Model testing	Ger	erate features		tion lay		6	
ş	Versioning				6.5 G.5	\$	tionlayer	
Û	Deployment				homaye	4.5 N VISUAILE	2	
GET	TING STARTED	Feature generation output Sat OLL 10 17:25:45 2021 CONSTRUCT embedde Still running completed 0 / 500 epochs	TUR	•	7	د		

	MFCC (BRIAN_PLANCHER-PROJECT-1)		Brian_plancher
	#1 ▼ Click to set a description for this version	Feature explorer (1,506 samples)	0
Dashboard	Parameters Generate features		
Devices	Training set	X Axis Y Axis	Z Axis
Data acquisition			
✤ Impulse design	Data in training set 1m 24s	idle updown walk	
Create impulse	Classes 3 (no, unknown, yes)	1.5	
MFCC	Window length 1000 ms	a 1	
NN Classifier	indovicingui indovinis.	ZRMS	1738 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1
Ø EON Tuner	Window increase 500 ms.	0.5	
🔀 Retrain model	Training windows 126		3,5
Live classification		0	2.5 SW2 2 SW2 1.5 XDD
Model testing		accy RMS	0.5 °C
پ Versioning	Generate features		
Deployment			
	Feature generation output	updown.9.1cjh52qu 20 Window: 4608 - 6608 ms. 10	
GETTING STARTED	Sat Oct 10 17:25:45 2021 Construct embedding Still running completed 0 / 500 epochs	Label: updown -10	accY accZ

🔁 EDGE IMPULSE

Dashboard

Devices

Data acquisition

✤ Impulse design

Create impulse

- MFCC
- NN Classifier

EON Tuner

NN CLASSIFIER (BRIAN_PLANCHER-PROJECT-1)

#1
Click to set a description for this version

Neural Network settings

Training settings

Number of training cycles ⑦

Learning rate ⑦

Audio training options

Data augmentation ③

\$ °	Switch to Keras (expert) mode
ţ	Edit as iPython notebook
1	00
0	.005

Model Design with Edge Impulse

Pre-made neural network "blocks" that you can add!

Neural Network settings	I
Training settings	
Number of training cycles ⑦	50
Learning rate ⑦	0.0001
Minimum confidence rating ⑦	0.80
Neural network architecture	
Input layer (637 feature	is)
Reshape layer (13 colum	ns)
1D conv / pool layer (30 neurons, 5	5 kernel size)
1D conv / pool layer (10 neurons, 5	5 kernel size)
Flatten layer	
Add an extra layer	
Output layer (5 feature	s)

Model Design with Edge Impulse

"**Expert**" mode to write your own TensorFlow code

<pre>from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D MaxPooling2D, BatchNormalization</pre>
<pre>from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D MaxPooling2D, BatchNormalization</pre>
<pre>trom tensortLow.keras.optimizers import Adam</pre>
<pre>sys.path.append('./resources/libraries')</pre>
<pre>import ei_tensorflow.training</pre>
model architecture
<pre>model = Sequential()</pre>
channels = 1
columns = 13
rows = int(input_length / (columns * channels))
<pre>model.add(Reshape((rows, columns, channels), input_shape =(input_length,)))</pre>
<pre>nodel.add(Conv2D(8, kernel_size=3, activation='relu', kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same'))</pre>
<pre>model.add(MaxPooling2D(pool_size=2, strides=2, padding ='same'))</pre>
<pre>model.add(Dropout(0.25))</pre>
<pre>nodel.add(Conv2D(16, kernel_size=3, activation='relu', kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same'))</pre>
<pre>model.add(MaxPooling2D(pool_size=2, strides=2, padding ='same'))</pre>
<pre>model.add(Dropout(0.25))</pre>
<pre>model.add(Flatten())</pre>
<pre>model.add(Dense(classes, activation='softmax', name='y_pred</pre>
))

Start training

Neural network architecture

Architecture presets ⑦ 1D Convolutional (Default) 2D Convolutional	 import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense. Input layer. Dropout. Conv1D. Conv2D.
Input layer (650 features)	<pre>Flatten, Reshape, MaxPooling1D, MaxPooling2D, BatchNormalization, TimeDistributed from tensorflow.keras.optimizers import Adam 5 6 # model anchitectupe</pre>
Reshape layer (13 columns)	<pre>8 model.add(Reshape((int(input_length / 13), 13), input_shape=(input_length,))) 9 model.add(Conv1D(8, kernel_size=3, activation='relu', padding='same')) 10 model.add(MaxPooling1D(pool_size=2, strides=2, padding='same'))</pre>
1D conv / pool layer (8 neurons, 3 kernel size, 1 layer)	<pre>12 model.add(Conv1D(16, kernel_size=3, activation='relu', padding='same')) 13 model.add(MaxPooling1D(pool_size=2, strides=2, padding='same')) 14 model.add(Dropout(0.25))</pre>
Dropout (rate 0.25)	<pre>15 model.add(Flatten()) 16 model.add(Dense(classes, activation='softmax', name='y_pred')) 17 18 # this controls the learning rate</pre>
1D conv / pool layer (16 neurons, 3 kernel size, 1 layer)	<pre>19 opt = Adam(lr=0.005, beta_1=0.9, beta_2=0.999) 20 # this controls the batch size, or you can manipulate the tf.data.Dataset objects</pre>
Dropout (rate 0.25)	<pre>22 train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=False) 23 validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) 24 callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count)) 25</pre>
Flatten layer	<pre>26 # train the neural network 27 model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) 28 model.fit(train_dataset, epochs=100, validation_data=validation_dataset, verbose=2,</pre>
Add an extra layer	
Output layer (3 features)	

Neural network architecture

Neural network architecture

y']) e=2.

Training output

Epoch 95/100 4/4 - 0s - loss: 0.1044 - accuracy: 0.9500 - val loss: 0.2934 - val accuracy: 0.9231 Epoch 96/100 4/4 - 0s - loss: 0.0256 - accuracy: 1.0000 - val loss: 0.3830 - val accuracy: 0.8846 Epoch 97/100 4/4 - 0s - loss: 0.0523 - accuracy: 0.9800 - val_loss: 0.4366 - val_accuracy: 0.8462 Epoch 98/100 4/4 - 0s - loss: 0.0451 - accuracy: 0.9800 - val loss: 0.4265 - val accuracy: 0.8846 Epoch 99/100 4/4 - 0s - loss: 0.0514 - accuracy: 0.9900 - val_loss: 0.3926 - val_accuracy: 0.8846 Epoch 100/100 4/4 - 0s - loss: 0.0348 - accuracy: 0.9900 - val_loss: 0.3571 - val_accuracy: 0.9231 Finished training **Validation Set Training Set**

Model

Model version: ⑦ Quantized (int8) -

Last training performance (validation set)

Confusion matrix (validation set)

	NO	UNKNOWN	YES
NO	100%	0%	0%
UNKNOWN	9.1%	90.9%	0%
YES	0%	11.1%	88.9%
F1 SCORE	0.92	0.91	0.94

Feature explorer (full training set) ③

Model

Model version: ③ Quantized (int8) 👻

Last training performance (validation set)

LOSS ~~ 0.27

Confusion matrix (validation set)

UNKNOWN YES NO 0% 0% NO UNKNOWN 9.1% 0% YES 0% 11.1% 0.94 F1 SCORE 0.92 0.91

Feature explorer (full training set) ③

Final Accuracy

Accuracy Breakdown

Confusion Matrix

	Actual Output = Yes	Actual Output = No
Predicted Output = Yes	# of True Positive	# of False Positive Type 1 Error
Predicted Output = No	# of False Negative Type 2 Error	# of True Negative

Model

Model version: ③ Quantized (int8) 👻

Last training performance (validation set)

LOSS ~~ 0.27

Confusion matrix (validation set)

UNKNOWN YES NO 0% 0% NO UNKNOWN 9.1% 0% YES 0% 11.1% F1 SCORE 0.94 0.92 0.91

Feature explorer (full training set) ③

Final Accuracy

Accuracy Breakdown

Model

Model version: ⑦

Quantized (int8) 🔻

Last training performance (validation set)

ACCURACY % 92.3%

Confusion matrix (validation set)

NO UNKNOWN YES 0% NO 0% 9.1% UNKNOWN 0% YES 0% 11.1% F1 SCORE 0.92 0.91 0.94

Accuracy Breakdown

Final Accuracy

Feature explorer (full training set) ③

Accuracy Br

K Axis	Y

View sample

View features

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training

• Deployment Challenges and Opportunities for Embedded ML

Summary
Even Lower power Even Lower bandwidth Even Lower cost

LEARNING KIT

TensorFlow

Compute

th Gen Intel* Core" 17

Memory

Storage

Microcontrollers have slower compute and very little memory and storage

Orders of Magnitude Difference

	Computer		Microcontroller
Compute	1GHz-4GHz	~10X	1MHz-400MHz
Memory	512MB-64GB	~10,000X	2KB-512KB
Storage	64GB-4TB	~100,000X	32KB-2MB

ML Model Size Growth

ML Model Size Growth

Reduces the precision of numbers used in

a model which results in:

- smaller model size
- faster computation

max: 3.40282e+38
min: 1.17549e-38

Reducing the Precision

Tradeoff

	Floating-point Baseline	After Quantization	Accuracy Drop
MobileNet v1 1.0 224	71.03%	69.57%	▼1.46%
MobileNet v2 1.0 224	70.77%	70.20%	▼0.57%
Resnet v1 50	76.30%	75.95%	▼0.3 5%

Model

Model version: ③ Quantized (int8) 👻

Last training performance (validation set)

~~

LOSS

0.27

Confusion matrix (validation set)

NO UNKNOWN YES 0% NO 0% 9.1% UNKNOWN 0% YES 0% 11.1% F1 SCORE 0.92 0.91 0.94

Feature explorer (full training set) ③

Accuracy Breakdown

Most operating systems come with many libraries and applications that make it easy and portable to write code once and then compile it in an optimized form for most computers (or smartphones)

Microcontrollers often require custom code and compilation toolchains to run optimally

Edge Impulse simplifies deployment

Pick your destination / device and **deploy** the same model to any of them thanks to **collaboration with hardware vendors** and the use of **TensorFlow Lite Micro**!

Deploy your impulse

You can deploy your impulse to any device. This makes the model run without an internet connection, minimizes latency, and runs with minimal power consumption. Read more.

Create library

Turn your impulse into optimized source code that you can run on any device.

Build firmware

Or get a ready-to-go binary for your development board that includes your impulse.

DashboardDevices

Data acquisition

✤ Impulse design

MFCC
 NN Classifier
EON Tuner

Retrain model
 Live classification
 Model testing
 Versioning
 Deployment

GETTING STARTED

Serums

0

Create impulse

DEPLOYMENT (BRIAN_PLANCHER-PROJECT-1)

Deploy your impulse

You can deploy your impulse to any device. This makes the model run without an internet connection, minimizes latency, and runs with minimal power consumption. Read more.

Create library

Turn your impulse into optimized source code that you can run on any device.

G		angle angle
C++ library	Arduino library	Cube.MX CMSIS-PACK
		
WebAssembly	NVIDIA. TensorRT library	
Duild ferrore		
Build firmware Or get a ready-to-go binary for your developm	nent board that includes your impulse.	
ST IoT Discovery Kit	Arduino Nano 33 BLE Sense	Eta Compute ECM3532 Al Ser

	DEVICES (BRIAN_PLANCHER-PROJECT-1)		
	Your devices	✓ Collect data ×	+ Connect a new device
Devices	These are devices that are connected to the Edg	You can collect data from development boards, from your own devices, or by uploading an existing dataset.	
A Impulse design	NAME	Connect a fully supported development board	
Create impulse	phone_kunh8zjd	Get started with real hardware from a wide range of silicon vendors - fully supported by Edge Impulse. Today, 16:24:48	:
MFCC NN Classifier	computer_kq77e063	Use your mobile phone Use your mobile phone to capture movement, audio or images, and ever run your trained model locally. No app required.	I

🚬 EDGE IMPULSE	DEVICES (BRIAN_PLANCHER-PROJECT-1)			Brian_plancher
	Your devices		c	+ Connect a new device
Devices	These are devices that are connected to the Edg	You can collect data from development boards, from your own devices, or by uploading an existing dataset.		
	NAME	Connect a fully supported development board	REMOTE LAST SEEN	
 Impulse design Create impulse 	phone_kunh8zjd	Get started with real hardware from a wide range of silicon vendors - Browse dev boards fully supported by Edge Impulse.	amera, • Today, 16:24:48	I
MFCC NN Classifier	computer_kq77e063	Use your mobile phone Use your mobile phone to capture movement, audio or images, and ever run your trained model locally. No app required.) era 🌒 Jun 21 2021, 18:41:37	i
-	V			

You can collect data from this device from the **Data acquisition** page in the Edge Impulse studio.

Switch to classification mode

</>
 A This client is open source.

YES

0.87

0.94

0.94

0.90

Deploy and Test your Model

Shows the score for (confidence that the current sounds is) each of the various keywords and unknown and bolds the highest score.

Today's Agenda

- Deep ML Background
- Hands-on Computer Vision: Thing Translator
- The Tiny Machine Learning Workflow
- Keyword Spotting (KWS) Data Collection
- KWS Preprocessing and Training
- Deployment Challenges and Opportunities for Embedded ML

• Summary

Activation Function

Deep Learning with **Neural Networks**

Features can be found with **Convolutions**

-1	0	1	
-2	0	2	
-1	0	1	

Features

Colab Link

Who will use your ML model? Where will your ML model be used?

Why will your ML model be used? Why those Keywords?

Training Set	Validation Set	Test Set
--------------	----------------	----------

174

Collect Data Preprocess Design a Model Train a Model Evaluate Convert Model Deploy Make Inferences					
Confusion Matrix	Actual Output = Yes	Actual Output = No			
Predicted Output = Yes	# of True Positive	# of False Positive Type 1 Error			
Predicted Output = No	# of False Negative Type 2 Error	# of True Negative			

Reduces the precision of numbers used in a model which results in:

- smaller model size
- faster computation

Microphone

Better Data = Better Models!
SciTinyML: Scientific Use of Machine Learning on Low-Power Devices

Hands on Embedded ML (Vision and Audio)

Brian Plancher Harvard John A. Paulson School of Engineering and Applied Sciences brianplancher.com

