Introduction to Sensors

2021 Sebastian Büttrich / IT University of Copenhagen sebastian@itu.dk

IT UNIVERSITY OF CPH

Motivation – why we talk about sensors

- Data-centric ML
 - The **importance of quality** data sets
- So far, we have mainly looked at human-generated data (voice, photography, social media ..)

but there is a whole other class of data, which is generated

through **scientific measurement**.

 Its importance e.g. in Environmental Science, Earth Observation, Energy transition, Climate Change, Logistics, Buildings, Urban Planning, Agriculture, Aquaculture, ... to name a few.

Sensors / Definition I

 A sensor is a device, module, or subsystem that

transforms a property of the physical ("real") world to a signal that can be read by electronic/digital systems - to "data".

• Properties, in the widest sense, can be

events, changes, states/static properties.

• There are many possible (and conflicting) definitions. Does a plant have sensors? (Shown on title slide: Drosera rotundifolia)

Sensors / Definition II

Note terms that might be problematic:

real world, physical world

"to translate into data" -

data is not inherently there – it is a human construct, created under technical, social, cultural conditions

Sensors / Definition IV

Clarification:

we will distinguish between the

the sensor -

and the

full **sensor node**, which includes a **sensor** and an

embedded system, a board, a device

(with processor/MCU, memory, storage, I/O,

on-board communications, networks, etc)

both of which together make up the

sensor node or device.

In practice, we often find the term **sensor** to denote the whole system, e.g. a *WiFi CO2* sensor, LoRa watermeter. source: purpleair, plantower

Sensors / Principle

• A sensor typically transforms a "real world" property into a

voltage (or current, which then gets converted to a voltage) which then may is digitized.

- Some **physical effect** is needed to make that transformation.
- To that end, for experiments,

a voltage source with a potentiometer fully replaces any type of (analog) sensor.

Analog / Digital

the output is an analog voltage or already digital (\rightarrow ADC)

Active / Passive

with regards to the measurement – does the sensor impact the object of interest? Discuss e.g. light sensors, watermeters

• Powered / Non-powered

- do we need to power the sensor in order for it to work?

- Physical / Chemical / Biological
- Field readiness, autonomy
- Cost: low-cost vs. (expensive) lab grade sensors

Sensors / Overview I

Push Button Displacement Pressure, weight, bend, vibration Distance Proximity Position Motion Acceleration Orientation (Magnetic, Gyroscope) Hall/Reed Voltage / Current **RF** Intensity

Light Sound Pressure, barometer Temperature Humidity, soil moisture Wind (speed, direction) Radioactivity Water \rightarrow Level, flow, chemistry Air \rightarrow indoor/outdoor → gaseous / particulate \rightarrow Smoke, Fire **Biological / Health** \rightarrow heart, pulse, breath, eye, ...

Sensors / Reminder of prerequisites

0

- SI UNIT system
- Powers of ten

	nternat	tional Sys	stem of	Units	s (SI)
SI B	SI Prefi				
Base Quantity	Name	Symbol	Factor	Name	Symbol
Length	meter	m	1012	tera	Т
Mass	kilogram	kg	10 ⁹	giga	G
Time	second	S	106	mega	M
Electric current	ampere	Α	10 ³	kilo	k
Temperature	kelvin	к	10 ²	hecto	h
Amount of substance	mole	mol	10 ¹	deka	da
Luminous intensity	candela	cd	10-1	deci	d
			10-2	centi	C

0

SI Derived Units

Derived Quantity	Name	Symbol	Equivalent SI units
Frequency	hertz	Hz	S ⁻¹
Force	newton	N	m-kg-s-2
Pressure	pascal	Pa	N/m ²
Energy	joule	J	N⋅m
Power	watt	W	J/s
Electric charge	coulomb	C	s-A
Electric potential	volt	v	W/A
Electric resistance	ohm	Ω	V/A
Celsius temperature "Unit degree Calcius is equal in magn	degree Celsius itude to unit ketvin.	°C	К*

		SI Prefix	Prefixes		
Factor	Name	Symbol	Numerical Value		
1012	tera	Т	1 000 000 000 000		
109	giga	G	1 000 000 000		
106	mega	M	1 000 000		
10 ³	kilo	k	1 000		
10 ²	hecto	h	100		
10 ¹	deka	da	10		
10-1	deci	d	0.1		
10-2	centi	C	0.01		
10-3	milli	m	0.001		
10-6	micro	μ	0.000 001		
10-9	nano	n	0.000 000 001		
10-12	pico	p	0.000 000 000 001		

Adapted from MST Special Publication 811

0

· Si rules and style conventions recommend using spaces rather than commas its separate groups of three digits.

0 2005 Fine Sowethi, Inc. All Repts Reserved APE809 0

What sensors look like

Sensors / Overview II

SensorBoard

Sensors are used to interface between the real world and the world of computers. This board maps the output of various sensors to a numeric display, providing an insight into what data to expect from a given sensor.

DXD L

source: ixdlab.itu.dk

13

10/20/21 · 11

Sensors / Simple examples

Sushing (MUSTA): The National VII In Instances process

Sensors / Buttons

Physical principle

Mechanical, closing circuit **Applications**

human interaction

Sensors / Mobile Phone

SensorLab

H

Sensors / Piezo

source: sparkfun, sintef.com

Sensors / Sound

Physical principle

Piezo, Mems, other

Applications

Sound :)

10/20/21 · 16

Sensors / Distance / Ultrasonic

Physical principle

Speed of sound

Applications

Distances

e.g. liquid levels

Sensors / Distance / Infrared

Physical principle

Triangulation Time of Flight (TOF) Interferometry

Applications

Distances

Sensors / Proximity / Infrared

Physical principle

Reflection

Applications

Proximity

10/20/21 · 19

Sensors / Acceleration, Orientation

Physical principle MEMS MicroElectroMechanical

Applications

Acceleration

Motion

Orientation

Gyroscope

(angular motion)

Compass

Sensors / Acceleration

source: Liu, R., Zhang, Z., Zhong, R., Chen, X., & Li, J. (2007). Nanotechnology synthesis study: research report. Texas Department of Transportation.

$10/20/21 \cdot 21$

MEMS

Sensors

Sensors / Gyrometer

Physical principle

source: sparkfun, wikipedia, MIT Physics

Physical principle

Hall effect

Applications

Magnetic fields

→ Motion

10/20/21 · 23

source: sparkfun, xignal

Sensors / Current

Physical principle

Induction

Applications

Power

Current

10/20/21 · 24

Sensors / Temperature

Physical principle

thermoelectric

Applications

Ambient temperature

Sensors / Liquid levels

Sensors / Soil moisture

Resistance

Capacity

TDT (time domain

transmission)

a.o.

10/20/21 · 27

sources: sparkfun, soilsense.io, gropoint.com, davisinstruments, catnip electronics

Sensors / Light

Physical principle Photoresistance

Applications

Light :)

Sensors / Radioactivity

Sensors / Water I / Flow

Physical principle

Turbine

Ultrasonic

Applications

Metering

Flows

Sensors / Water II / Chemistry

source: atlas scientific

Sensors / Water II / Chemistry

Bangkok Thailand AIT / ICTP / NSRC 2014

10/20/21 · 32

Sensors / Air I

Air quality/pollution sensors are an especially complex area

Indoor / outdoor

 \rightarrow different gases/pollution types of interest

Indoor: CO₂, Volatile Organic Compounds (VOCs), Particulate Matter (PM)

Outdoor: Pollutors widely included in Air Quality Index:

NO₂, SO₂, O₃, PM2.5, PM10

Challenge: low-cost sensors vs. "lab grade sensors"

Citizen science projects: e.g. sensor.community, safecast.org

Rapid progress in new sensor types,

miniature sensors, MEMS, solid state sensors, mobile sensors

Sensors / Air II

Sensors / "DIY" low cost projects

Sensors / low-cost NO₂

IT UNIVERSITY OF COPENHAGEN

Assessing the applicability of low-cost electrochemical gas sensors for urban air quality monitoring

Sensors / citizen science / sensor.community

0.1

PH2:5

5un 18:00

Mon 00:00

ton 06:00

1.0

0.5

Non 12:00

sensor: SDS011 board: NodeMCU

IT UNIVERSITY OF COPENHAGEN

source: sensor.community

Sensors / citizen science / safecast

IT UNIVERSITY OF COPENHAGEN

source: safecast.org

Sensors / citizen science / #CO2ampel

check on Twitter!

15 March, 2021 Re-opening of schools in Germany

IT UNIVERSITY OF COPENHAGEN

Sensors / Cameras, Images, Video

Among all the sensors we named, some were notably **missing**:

Cameras

perhaps the richest and most popular source for embedded ML

(but are they sensors?

Camera vs Image Sensor?)

10/20/21 · 40

Sensors / Time

Important in all we do: Time

for example a **Real Time Clock (RTC)**

(but are they sensors? for discussion ...)

10/20/21 · 41

Sensors / Location

Equally important: Location

Physical principle Data from GNSS Sats

GPS

Glonass

BeiDou

(Is this a sensor?)

Applications

Position

(but are they sensors?)

10/20/21 · 42 source: sparkfun, taoglas, wikipedia

Sensors / Trends, Future

Driven by - among other trends - ,

mobile devices, embedded devices,

IoT, data-centric ML:

MEMS

(micro electro mechanical systems),

nanosensors

OmniVision OV6948 *image sensor* 40k (200x200) pixels 0.575 x 0.575 x 0.232mm Arduino TinyML kit has OV7675 Camera CirrusLogic WM1706 microphone

source: abiResearch/cirrusLogic,OmniVision

Sensors / Trends, Future

Remote sensing from satellite:

Optical & whole EM spectrum

e.g. for

Air quality,

surface,

agriculture,

oceans, ...

Sensors / Terminology I

- **Sensitivity** minimum change needed to change output
- **Range** minimal and maximal values
- Precision spread ability to give same value under same conditions
- Accuracy bias, ability to give true value under same conditions
- **Resolution** minimal difference that can be told apart
- Offset Bias
- Linearity over whole range
- Hysteresis dependence on former history
- Drift change in offset or behaviour over time
- Response Time how fast
- Rate how often

http://www.ni.com/white-paper/14860/en/

Sensors / Terminology III / Accuracy & Precision

Sensors / Terminology IIIa / Accuracy & Precision

Sensors / Calibration

- Sensors always require calibration, and in many cases frequent re-calibration
- Might be factory-based and/or performed by user
- Calibration needs to be documented
- Might depend on many variables!

3.7.2 Model 2

Model 2 introduces a linear dependency in the zero offsets on temperature and humidity:

$$Y = \frac{WE - WE_0(a_1T + b_1RH) - (AE - AE_0(a_2T + b_2RH))}{S_T}$$
(3.21)

where

a₁, a₂, b₁ and b₂ are four parameters obtained from the calibration

T is temperature [K]

RH is the relative humidity [%]

10/20/21 · 48

Sensors / Errors

- Sensors always require discussion of errors
- In the physical world, a measurement without discussion of error is useless

Sensors fail in may ways ...

- drop out
- flat-lining
- drift
- offset/bias
- noise
- time shift

(loss of time axis - not really a sensor issue)

sensor failures are often hard to detect what is an outlier, what is real?

redundant sensors might help

drop outs, flatlining

10/20/21 · 50

Sensors / Communication in embedded devices I

- Short distance (intra board)
- Moderate data rates (kBps)

Three most popular standards:

- I²C (Inter-Integrated Circuit)
- **SPI** (Serial Peripheral Interface)
- 1-Wire

Sensors / Communication in embedded devices II

- I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a synchronous, multimaster, multi-slave, packet switched, single-ended, serial computer bus (1982 Philips Semiconductor, now NXP Semiconductors). Two bidirectional wires: Serial Data Line (SDA) and Serial Clock Line (SCL)
- The Serial Peripheral Interface (SPI) is a synchronous serial communication interface specification used for short distance communication, primarily in embedded systems (Motorola, 1980s). 4 wires, full duplex.
- 1-Wire is a device communications bus system designed by Dallas Semiconductor Corp. that provides low-speed (16.3kbps) data, signaling, and power over a single conductor. Similar in concept to I²C, but with lower data rates and longer range.

Sensors / ADC

- Analog signals require
 Analog-to-Digital Conversion
- Rate, Resolution
- ADC and reference voltage need to match signal range, e.g.

A 10-bit ADC with $U_R = 5V$ converting a 20 mV signal range will give you no more than 5 discrete values \rightarrow Signal conditioning, Amplification

Sensors / ADC (analog-to-digital conversion)

Analog signals require Analog-to-Digital Conversion

(Rate [kHz], Resolution [bits])

ADC and reference voltage need to match signal range,

else resolution remains unused -

 \rightarrow Signal conditioning,

Amplification

Sensors / Practical Advice

• Find the datasheet (and know how to read it!)

Datasheet Sensirion SCD30 Sensor Module CO₂, humidity, and temperature sensor

- NDIR CO₂ sensor technology
- Integrated temperature and humidity sensor
- Best performance-to-price ratio
- Dual-channel detection for superior stability
- Small form factor: 35 mm x 23 mm x 7 mm
- Measurement range: 400 ppm 10.000 ppm
- Accuracy: ±(30 ppm + 3%)
- Current consumption: 19 mA @ 1 meas. per 2 s.
- Fully calibrated and linearized
- Digital interface UART or I²C

Sensors / Practical Advice

- Find "hookup" guides, applications notes
- Find existing libraries for your platform
 - decoders, calibration routines, etc

Sensors / Use Case Water Metering

Sensors / Use Case Utility Meters Retrofiting

technologies: Wemos/Lolin boards, LoRa or Wi-Fi

benefit:

fine-grained consumption data

Note: this is legal (in Denmark), but **not neccessarily recommended** for copying! :)

Sensors / Use Case Utility Meters Retrofiting

ITU

Residential Electricity

https://www.wemos.cc/en/latest/d1/d1_mini.html

20-10-21 · 59

Sensors / Use Case CO₂ at lab

Sensors / Use Case CO₂ at home

Questions? Comments?

Thanks!

2021 Sebastian Büttrich / IT University of Copenhagen sebastian@itu.dk

IT UNIVERSITY OF CPH