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About Me

• BEng/MEng in Mechanical Engineering in 2017 from
Imperial College London with a year abroad at the
National University of Singapore.
• Currently pursuing Ph.D. in engineering sciences and
data science at Harvard University, developing
intelligent chemical sensing systems to study the
atmospheric chemistry of the tropical Amazonian
rainforest.
• Data science blogger published in Towards Data
Science, TOPBOTS, Experfy, and other sites.
• Contributor to the HarvardX TinyML series on EdX.

https://medium.com/@matthew_stewart


Atmospheric Composition
Global Composition Trace Gases

Despite their relatively small abundance, trace gases (1) dominate atmospheric reactivity, (2) strongly influence the 
climate, as well as public health, and (3) are a major focus of atmospheric research.



Important Atmospheric Constituents – Climate Change

(IPCC, 2014)

• Recent IPCC reports (AR4-AR6) 
highlights the importance of certain trace 
gas emissions on global temperatures

• Most closely monitored emissions are 
carbon dioxide, methane, CFCs, carbon 
monoxide, and nitrogen oxides

• Aerosols also play an important factor 
but are still poorly understood

What about non-methane volatile 
organic compounds (NMVOCs)?

https://www.ipcc.ch/report/ar5/syr/synthesis-report/
https://www.ipcc.ch/report/ar5/syr/synthesis-report/
https://www.ipcc.ch/report/ar5/syr/synthesis-report/


Important Atmospheric Constituents – NMVOCs
The dominant emission source of volatile organic compounds (VOCs) to the atmosphere is from biogenic sources,
such as tropical (e.g., Amazon/Congo/Borneo) and boreal (e.g., Canada/Russia) forests, but also industry.
VOCs lead to ozone and aerosol formation via atmospheric cycling.
It is estimated that more than 10,000 VOC species are emitted to the atmosphere (Goldstein and Galbally, 2007).

Consequences

Chemistry: source and sinks, local or long transport 

Climate: light scattering & absorption, effect on clouds 

Health: asthma, mortality, lung cancer

Vegetation: reduction in light required for 
photosynthesis and increase in leaf temperature due to 
changed surface optical properties

https://pubs.acs.org/doi/10.1021/es072476p


Important Atmospheric Constituents – Sulfur + Nitrogen Oxides

Two important gases are nitrogen oxides and
sulfur dioxide, the main constituents of acid rain
(rain with an acidic pH range).

Predominantly emitted through lightning strikes,
volcanic eruptions, and by the combustion of
sulfur-containing coal.

Acid rain is bad for human health, crops, and can
cause weathering and erosion of objects out in the
open.

Most countries have regulations that have largely
eliminated the problem of acid rain, but it is still
prevalent in some regions of the world.



Important Atmospheric Constituents – Aerosols

Aerosols come in two forms: primary and
secondary.
Primary aerosols are produced via wind
erosion, sandstorms, sea salt, etc., and are
generally larger in size.
Secondary aerosols are formed from the
oxidation of gases, which lowers their
vapor pressure and makes them more
susceptible to condensation. These
particles are generally smaller in size and
act as nuclei for cloud droplets.
Smaller particles can penetrate deep into
human lungs, while larger particles are
deposited in the upper respiratory tract.

(Guarnieri and Balmes, 2014)

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)60617-6/fulltext


Examples of Aerosols

Aerosol haze from industrial pollutants in Beijing Visibility limited by aerosol scattering in southwest Poland



How are gases and aerosols measured?

Top-down
• Analysis performed at the global, national, or

regional scale
• Typically utilizes satellite data
• Involves large-scale data processing (~1 TB)
• Spatial granularity of data is low, typically 10-30 

km
• Temporal granularity is typically low: most

commonly daily, weekly, or monthly values
• Often column-based measurements instead of 

ground-level measurements

Bottom-up
• Analysis performed at the local or hyperlocal scale
• Typically uses singular devices or sensor systems
• Much smaller data sizes, processing can often be 

performed on small devices like microcontrollers
• Spatial granularity is fixed unless the device is 

moved or is part of a larger network of devices 
• Temporal granularity can be as high as allowed by 

the sensing mechanism utilized
• Typically get in-situ, ground-level measurements

There are two ways we can study gases and aerosols: top-down and bottom-up. 
• Global/regional scale → top-down measurement → satellite observations
• Local/hyperlocal scale → bottom-up measurement → singular devices
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Traditional ML methods 
favored

TinyML methods favored



Gold-standard instrumentation vs. low-cost sensor
Alphasense OX-A431 Ozone Sensor

Cost: (~$100)
Measurement Range: 0-20 ppm

Measurement Accuracy: +/- 15 ppb
Weight: 6 g

Power Consumption:  < 1 mW

Eco Sensors model UV-100 ozone analyzer
Cost: (~$4500)

Measurement Range: 0.01-999 ppm
Measurement Accuracy: +/- 2%

Weight: 2.1 kg
Power Consumption: 4.8 W



Challenges integrating TinyML with gas sensors

Alphasense OX-A431 Ozone Sensor
Power Consumption: ~1 mW

(1) Not all sensors are created equal
Electrochemical sensors generally have low power consumption, but some low-cost sensors 
have higher power requirements, especially those with optical/heating sensing mechanisms.

Alphasense PID-AH1/2 Sensor
Power Consumption: ~100 mW

Alphasense OPC-R2 Particle Monitor
Power Consumption: ~300 mW

Alphasense CH-A3 Combustible Gas Pellistor
Methane Sensor 

Power Consumption: 190 mW

Alphasense IRC-A1 CO2 Sensor
Power Consumption: 300 mW

Alphasense VOC Metal Oxide Sensors
Power Consumption: ~500 mW



Challenges integrating TinyML with gas sensors
(2) Combining sensors rapidly increases power consumption
TinyML is typically defined with on-device power consumption on the order of 1 mW – by combining multiple 
sensors our device can quickly reach power consumption values on the order of ~1W

Alphasense PID-AH1/2 Sensor
Power Consumption: ~100 mW

Alphasense OPC-R2 Particle Monitor
Power Consumption: ~300 mW

Alphasense IRC-A1 CO2 Sensor
Power Consumption: 300 mW

Alphasense VOC Metal Oxide Sensors
Power Consumption: ~500 mW

Interface

Arduino Nano

Current limit: 500 mA



Challenges integrating TinyML with gas sensors
(3) Cross-sensitivity of gases
Cross sensitivity occurs when a sensor shows readings for a gas that is not the target gas. 
This interfering gas causes a reaction in the sensor — therefore showing a change in 
readings — even if the target gas is not present.

Cross-sensitivity could be likely be 
eliminated using TinyML!

Examples:
• Hydrogen sulfide sensor responds to 

increase in hydrogen gas
• PID sensor signal may drop in the 

presence of high methane concentrations 
due to absorption of photons



Challenges integrating TinyML with gas sensors
(4) Noise from changes in environmental variables

Changes in temperature, humidity, and pressure can influence sensor measurements 
depending on the sensing mechanism used.

• Pressure can be assumed constant for most 
atmospheric monitoring purposes

• Temperature → maybe correction factor

• Humidity→ correction factor

It is standard practice to implement a temp/RH 
sensor onboard to introduce the correction factor –
this could be learned and continuously retrained 
on-device using TinyML 



Applications of TinyML for Atmospheric Monitoring
(1) Real-time sensor correction

O3 Concentration

Temperature

Relative Humidity

NOx concentration

Particle count

Corrected 
O3 Concentration

Data corrections can be performed in real-time by passing sensor data through the 
inference pipeline of a trained model

We could also train our model 
to predict the concentration of 
a gold-standard device using 
the low-cost sensor and other 
peripheral sensors



Applications of TinyML for Atmospheric Monitoring
(2) Gas Anomaly Detection

Anomaly detection algorithms can 
be used to determine real 
anomalies as opposed to spurious 
signals.

Pydetect offers 4 anomaly 
detection algorithms: 

• MeanDetector
• VarianceDetector
• MeanVarianceDetector
• GESDDetector

Deep learning methods can also be 
used for anomaly detections

Real anomaly

Spurious signals



Applications of TinyML for Atmospheric Monitoring
(3) Multi-Gas Anomaly Detection

• Gas sensor system set up in a cascade architecture 

• Upstream segment consists of a passive species-agnostic gas sensor for low-power 
anomaly detection

• Downstream segment consists of an active multi-gas detection system for chemical 
identification and concentration estimation 

Passive species-
agnostic gas 

sensor

Input

Generalized 
gas anomaly 

detection

Always-on MCU 

Anomalies 
relayed to 

latent system

Multi-Gas Sensor System

Chemical identification 
and concentration 

estimation

Data storage 
and corrective 

action 

Server

E.g., PID sensor E.g., Arduino Nano E.g., Raspberry Pi hosting suite of 
environmental sensors 

E.g., data communication to 
cloud or nearby device(s)

Anomaly
detected



Applications of TinyML for Atmospheric Monitoring
(4) Intelligent Gas Sensor Networks

Applications
• Emissions compliance in industrial facilities
• Air quality monitoring in urban areas – e.g., 

inner cities, highways, indoor facilities
• Monitoring of forest fires in remote locations

Features
• Only communicate anomalous data
• Device/sensor configuration may be either 

homogeneous or heterogeneous
• Can be disconnected from a power grid for a 

finite period for remote monitoring

Gas Sensors

Communication Range

Base Station



Applications of TinyML for Atmospheric Monitoring
(5) Continuous retraining to accommodate sensor drift (Tentative application)

Any deployed machine learning model will need to be retrained over time to accommodate 
sensor drift – on-device training is currently difficult to achieve

• Similar to treatment of model drift 
in traditional MLOps

• More challenging due to limited 
available resources on device 

• Drift may be short- or long-term, 
long-term drift associated with 
sensor aging, short term with 
environmental changes 
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