Unsupervised Learning and Anomaly Detection

Marcelo Rovai
Professor, UNIFEI - Brazil

Shawn Himel
Senior DevRel Engineer, Edge Impulse
Machine Learning

- **Supervised learning**
 - Task-driven
 - Regression
 - Classification
 - Object detection

- **Unsupervised learning**
 - Data-driven
 - Clustering
 - Segmentation
 - Anomaly detection

- **Reinforcement learning**
 - Learn from experience
 - Robotics
 - Games
 - Recommender systems
Unsupervised Learning

- No labels!
- Model automatically discovers patterns in the data
- Uses
 - Segmentation
 - Clustering
 - Dimensionality reduction
 - Anomaly detection
K-means Clustering

1. Define k (e.g. k=3)
K-means Clustering

1. Define k (e.g. k=3)
2. Randomly choose centroid for each cluster
K-means Clustering

1. Define k (e.g. $k=3$)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
K-means Clustering

1. Define k (e.g. k=3)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
K-means Clustering

1. Define k (e.g. k=3)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
5. Repeat steps 3-4
K-means Clustering

1. Define k (e.g. $k=3$)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
5. Repeat steps 3-4
K-means Clustering

1. Define k (e.g. k=3)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
5. Repeat steps 3-4
K-means Clustering

1. Define k (e.g. k=3)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
5. Repeat steps 3-4
K-means Clustering

1. Define k (e.g. k=3)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
5. Repeat steps 3-4
K-means Clustering

1. Define k (e.g. $k=3$)
2. Randomly choose centroid for each cluster
3. Assign every sample to nearest centroid based on Euclidean distance
4. Re-compute the centroid of the cluster
5. Repeat steps 3-4
6. ...until one of:
 a. Sum of distances between data points and corresponding centroid is minimized
 b. No change in centroids
 c. Maximum iterations reached
Image Segmentation

K-means clustering
Anomaly Detection

Examples:
- Email spam
- Credit card fraud
- Motion alarm
- Fault detection

Outlier/anomaly
Dimensionality Reduction

Example: principal component analysis (PCA)

Easier to visualize, less complexity