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Foot and 
Mouth 
Disease
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Infectious livestock disease caused by 
the Foot and Mouth Disease Virus 
(FMDV)

Affects cloven-hoofed domestic 
animals and around 70 wild creature 
species 

African Buffalo, including cows, pigs, 
and little ruminants



Foot and Mouth Outbreaks in Zimbabwe from 1931 to 2016

(Guerrini et al., 2019)
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Foot and Mouth 
Serotypes 

• 7 distinct serotypes (O, A, 
C, Asia 1, SAT 1, 2, & 3) and 
there are some subtypes in 
each serotype. 

• Serotypes O     Oise 
France 

• Serotypes A  
Allemagne in Germany. 

• Serotypes         SAT    
Southern African Territory
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Foot and Mouth 

• The incubation period of FMD is between 2-12 days

• Animals can experience high fever with temperatures 104 -106 ⸰F.

• Animals also develop blisters in the mouth (tongue, gum, lips ) which

later rupture and leave ulcers.

• Blisters also develop on the teats and feat of animals (Aftosa, 2015).

• However, confirmation of diagnosis can only be done after laboratory

tests. 5



FMD Control Measures 
• Early detection and reporting of the FMD to limit the spread of the 

disease

• II. Quarantining of the infected animals at the premised where it was 
detected 

• III. Containing the spread of the disease by restricting the movement 
of the animals from the premises.

• IV. Vaccination of cattle to eradicate the disease 

• V. Continuous surveillance in the FMD prone diseases
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Foot and Mouth Symptoms -Cattle

Drooling
Feet 
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Foot and Mouth Symptoms -Cattle

Gum lesion Teat lesion 
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Deep learning 

Illustration of a typical convolutional neural network architecture setup (Nguyen et al, 2017).
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Deep learning 

• Deep learning is a specific subfield of machine learning:

• a new take on learning representations from data that puts an 
emphasis on learning successive layers of increasingly meaningful 
representations.

• Deep means stands for this idea of successive layers of 
representations.

• How many layers contribute to a model of the data is called the 
depth of the model
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Problem Statement

There is a shortage of veterinary specialists across the country due to

brain drain which leaves farmers cattle vulnerable, timeous advice for the

detection of FMD as the diseases leads to loss of production of livestock

meats and also milk to farmers and also a major impediment as countries

with foot and mouth faces trade restrictions moreover the disease is

difficult and costly to control and eradicate.
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Aim 
• To investigate how deep learning architectures 

can be used to detect foot and mouth 
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Objectives
i. Detection of foot and mouth disease using deep learning 

architectures; 

ii. Assessment of deep learning architecture model performance for 
the detection of foot and mouth disease;

iii. Recommendation of a system for capturing images used in 
detection of foot and mouth disease. 
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Related work 

Digital and infrared images of cattle without (A) or with (B) fever and note that the lower temperatures (blue-green) in
the animal without fever or viremia versus the higher temperatures (orange-red) in the viremic and feverish animal.
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Material and Methods 
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Acquisition of Healthy cattle images

Images taken whilst cattle were grazing Process for taking images for tongue, gum and teats
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Acquisition of Healthy cattle images

Process for taking images of the feet 17



Data Préparation 

Training Directory

Validation Directory
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Preprocessing -Selection of area of interest 
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Image Augmentation 
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Foot and Mouth Detection 

Softmax classifier outputs the probability of an image belonging to a certain type of class e.g. foot and mouth disease or 

healthy class. 
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Procedure for detecting 
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Risk Management

Risk Counter Measure

Failure to get images from the Veterinary

department

Request from International Organisations dealing with Foot and Mouth (EuFMD,

Pirbright Institute)

Download from the Internet

Few images Data Augmentation

Image Pre-processing of healthy cattle and pre-process them introducing diseases

Transfer learning

Cattle feet in a muddy farm Isolate the cattle and wash their feet before taking pictures

Large training time required for CPU Use Google Colab Graphical Processing Unit (GPU)

Google Colab resources are not

guaranteed

Use the high-performance computer at the University of Zimbabwe
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Results 

Model Layers Params Training

Accuracy%

Validation

Accuracy%

Training

loss

Test

Accuracy

Test loss

Inception V3 48 41.2M 0.9950 0.9525 0.0208 98.44 6.91

VGGnet 16 119.6M 0.8995 0.9300 0.314 79.69 50.11

Resnet 50 23.6M 0.9950 0.9850 0.0163 95.31 8.43

Resnet 152 58.5M 0.9825 0.9575 0.0367 100 8.70

Densenet 201 121 7.1M 0.9900 0.9900 0.0152 96.87 7.05

M  Million 
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Densenet 201
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Evaluation Metrics

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Where; 

• TP, FP, and FN represent the true positives, false positives and false 
negatives. 
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Confusion Matrix 
• True Positive TP: cases when classifier predicted TRUE (they have the disease-Foot and 

Mouth) and the correct class was TRUE (cattle has the disease- Foot and Mouth)

• True Negative TN: cases when the model predicted FALSE (no disease-Healthy) and the 
correct class was FALSE (cattle do not have the disease-Foot and Mouth) 

• False Positive FP: (Type I error): classifier predicted TRUE but correct class was FALSE 
(cattle did not have the disease) 

• False Negatives FN: (Type II error): classifier predicted FALSE (cattle do not have the 
disease-Foot and Mouth) but they do have the disease
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Confusion Matrix

(Predicted) (Predicted)

(Actual) True 

Positive

(TP)

False 

Positive

(FP)

Actual) False 

Negative

(FN)

True 

Negative

(TN)
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Comparison of the Predictions 
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Densenet Confusion Matrix 
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Densenet Multiclassification 
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Comparison of the evaluation metrics 
• Sensitivity is the probability that the screening test is positive given that 

cattle have foot and mouth disease

• Specificity is the probability that the screening test is negative given 
that cattle do not have the foot and mouth disease 

• Sensitivity =𝒕𝒓𝒖𝒆𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒓𝒂𝒕𝒆: 𝑻𝑷𝑹 =
𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝒕𝒐𝒕𝒂𝒍 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
=

𝑻𝑷

𝑻𝑷+𝑭𝑵

• 𝑺𝒑𝒆𝒄𝒊𝒕𝒊𝒗𝒊𝒕𝒚 = 𝒕𝒓𝒖𝒆𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒓𝒂𝒕𝒆: 𝑭𝑵𝑹 =
𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝒕𝒐𝒕𝒂𝒍 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
=

𝑻𝑵

𝑭𝑷+𝑻𝑵
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Specificity and Sensitivity 
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Evaluating Performances 
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Predictions on test images 
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Prediction of gum lesion and non-gum lesion images
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Prediction of drooling and non-drooling image
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Prediction of teat lesion and non-lesion
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Prediction of Tongue lesion and non-tongue lesion
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Batch testing 
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Conclusion  
• This study set out to evaluate how effective is the detection of FMD using 

different deep learning architectures

• Findings of this study’ show that FMD can be detected using deep learning 
however larger datasets of both FMD and healthy images are required to 
improve the performance evaluation metrics and also the identification of 
the disease

• Thus veterinary departments and international organisations across the 
World must be encouraged to take images and archive of cattle diseased 
with FMD. 

• The main contribution of this study is that it has set the groundwork for the 
development of a mobile application (app) that will be used for the 
detection of FMD. 
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VGG-16 Accuracy and loss performance 
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Inception v3
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ResNet 152v2
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ResNet 50
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InceptionResnetv2
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