Artificial Intelligence as a driver for the sustainable development
Application to disaster risk reduction

Soichiro Yasukawa
Chief, Disaster Risk Reduction Unit
Natural Sciences, UNESCO
Why is disaster risk reduction important?

DRR FACTS

From 1998 to 2017, natural hazards caused:

- **$1.4 trillion** in damage
- **1.3 million** lives claimed
- **4.4 billion** people injured worldwide
- Earthquakes account for **more than half of the fatalities**

Numbers of disasters per type

- **Flood**: 3,148 (43.4%)
- **Storm**: 2,049 (28.2%)
- **Earthquake**: 563 (7.8%)
- **Landslide**: 378 (5.2%)
- **Extreme Temperature**: 563 (7.8%)

Number of deaths

- **Earthquake**: 747,234 deaths (56%)
- **Flood**: 342,098 deaths (11%)
- **Storm**: 233,680 deaths (13%)
- **Extreme Temperature**: 28,318 deaths (2%)
- **Landslide**: 21,650 deaths (1.7%)
- **Drought**: 1,544 deaths (0.1%)
UNESCO’s approach to DRR

- At the interface of a wide mandate - Natural and Social Sciences, Education, Culture, and Communication and Information, UNESCO takes a multi-hazard, multi-disciplinary and multi-stakeholder participatory approach.

- 8 cross-cutting thematic

- UNESCO explores both conventional and innovative solutions for effective preparedness and response.

- UNESCO’s priority areas: Africa, gender, SIDS, youth.
Asian Regional Workshop SciTinyML 2022

UNESCO DRR Activities around the globe

Europe
- Issue Based Coalition for Environment and Climate Change
- OPERANDUM (Nature based solution for DRR) in 7 countries
- RURITAGE (Rural Regeneration) in 6 countries
- SHELTER (Culture Heritage DRR) in 10 countries
- The Portuguese Sea and Atmosphere Institute (IPMA) as Tsunami Service Provider (TSP)
- Collective community management approach and capacity building activities in 6 countries

Arab
- Science and Technology Advisory Group for DRR
- Nature-based solution for natural hazards
- Atlas on Natural Hazards: A tool for socio-ecological system resilience in the Arab States
- Urgent Interventions to Build Socio-Ecological System Resilience to Natural Hazards in MENA region

ASIA and Pacific
- U-INSPIRE: young professional platform for DRR
- Science and Technology Advisory Group for DRR
- Disaster Risk Reduction and Management Training in Nepal
- International Workshop for Disaster Risk Reduction Knowledge Service in China
- Monsoon School on Urban Floods in India
- The South China Sea Tsunami Advisory Centre (SCSTAC)
- Landslide Early Virtual Observatories in Nepal

Latin America and Caribbean
- Decision support by Bayesian Model
- Science and Technology Advisory Group for DRR
- PRERADE (Risk governance) in Mexico
- Earthquake DRR in LaC5 (Built) in 5 countries
- VISUS (School) in Haiti, Peru, Dominican Republic
- CARIDIMA Youth Platform: young professional network on DRR and CC in Caribbean SIDS
- Guidelines for developing a National Strategy for DRR in the Caribbean Culture Sector
- Workshop on Climate Impacts & Vulnerabilities in Guyana
- Tsunami inundation and evacuation maps in 6 countries

Africa
- AI Chatbot and SMS analysis for DRR in East Africa (STEDPEA)
- Social Media analysis by AI in East Africa
- Flood risk management in West Africa
- Post Hurricane Idai flood risk management (Southern Africa)
- Earthquake early warning system in Ghana
- Integrated DRR courses in Ethiopia
- Enhancing Climate Services for Improved Water Resources Management in climate sensitive Regions
- Strengthening of evidence-based decision and policy making in Gambia
Early warning system: flood forecasting with AI

WADiRE- Africa Donor: Ministry of Foreign Affairs of Japan

Schematic diagram of the flood early warning system (FEWS) prototype version 1.0 for West Africa on Data Integration and Analysis System (DIAS).
Early warning system: flood forecasting with AI

Artificial Intelligence is used to predict areas with a high likelihood of flooding in the next 24h.

24-hour AI-based forecasts of inundated areas in the flood-prone areas of Mozambique.
Strengthening Disaster Prevention Approaches—STEDPEA
Donor: Ministry of Foreign Affairs of Japan

AI Chatbot (Mobile Applications)
In 5 countries (Kenya, Rwanda, South Sudan, Tanzania and Uganda)
AI chatbot enable sharing information on disasters and connecting communities to expedite relief efforts during disasters.

- **Optimize the communication** between government and citizen
- **Share the information** of supplies and evacuation immediately
- **Grasp the situation** of damage/recovery accurately for both side
School Safety: Using AI for optimized investment decision making

Development of the modeling framework of hazard resilience of integrated school system and road network in Dominican Republic.

Hazards:
Earthquake
Landslides
Flood

School physical infrastructure:
Building types-data collection tool
Classification
Vulnerability at building and country scale

Social infrastructure:
Demographics
Political influence and views
Economic and development status
Sheltering need for communities

System resilience:
Quantify resilience
Improvement strategies

Associated critical infrastructure:
Roads
Other examples of AI application in the Natural Sciences Sector
Tiny machine learning (TinyML) is a fast-growing field of machine learning, capable of performing on-device sensor data analytics at extremely low power consumption and with low-cost devices. It does not require an internet connection, making it ideal for remote/rural areas.

TinyML can be used to detect wildfires and floods using sound.

System designed by The Abdus Salam International Centre for Theoretical Physics (ICTP)
Since 2019, UNESCO and IFPEN have been developing a mobile application using artificial intelligence to promote geosciences to the general public and contribute to the dissemination of knowledge in this field.

RockNet is inspired by PlantNet. A free application for PC and smartphone, RockNet will allow a user to identify the nature of the rock they have photographed.

ROCKNET

For the educational world
✓ A modern and fun educational tool: new deep learning approach: patent application in December 2019
✓ Organise an inter-university challenge for image collection

For the general public
✓ Dissemination of a geological culture, based on from the everyday environment

For geoparks
✓ Artificial intelligence can be specialised on a geographical area
✓ Promote geo-tourism and enhance natural heritage
✓ Mobilise local communities to collect images
How TinyML be applied to Disaster Risk Reduction?
Some ideas how TinyML can be used for disaster risk reduction

Monitoring and detection of natural phenomenon; wildfire, drought flood, earthquake, landslide

Health monitoring of building/infrastructure (small vibration of the structure to identify the vulnerability of buildings)

Using TinyML with drone

Changing risk perception (changing people’s behavior to take action/evacuate)
Thank you

Investing 1 $ in disaster risk reduction can save up to 15 $ in avoided losses and reconstruction