

We put ML into real products

Louis Moreau, Senior DevRel Engineer @luisomoreau

A paradigm shift

Benefits of edge ML

Innovation

Add new differentiating features, become a market leader by standing out from your competition

Privacy

Data stays on the device, gets processed locally and drives remote alerts, notifications, and actions

Power

Stay operational for longer periods of time

Cost

Save on storage and compute costs by not sending raw data constantly to the cloud

Reliability

Be operational in low connectivity environments

Bandwidth & Latency

Process data real-time on the edge device, without having to wait for a response back from the cloud

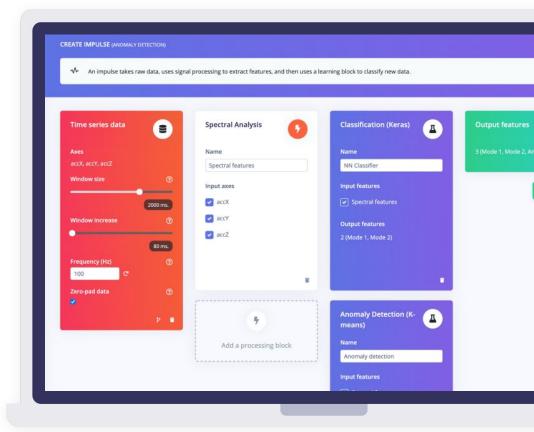
Platform

Powering the largest edge ecosystem with MLOps

40,000+

Developers

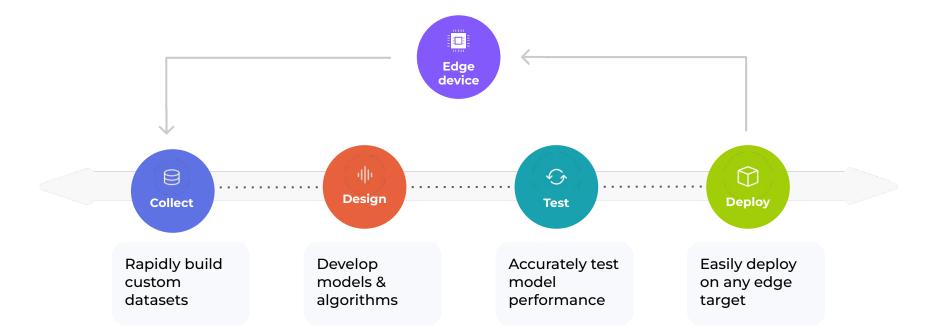
Projects


Enterprises

TRUSTED BY LEADING ENTERPRISES

The developer-first edge ML platform

- Royalty-free business model, therefore no impact on BOM cost
- Your IP, stays your IP
- Total explainability, no black boxes

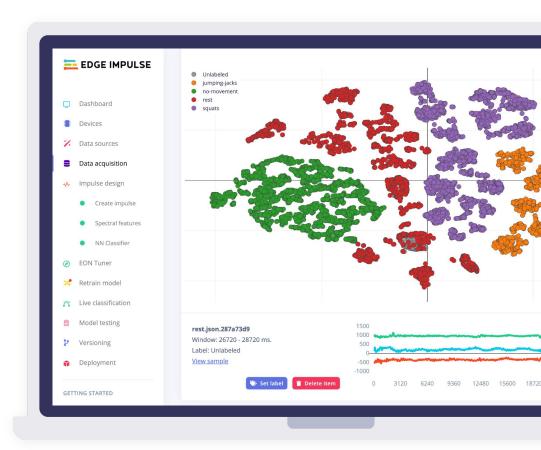


Any sensor, any data, any use case

Video assification
1GB+
0
O
0
•

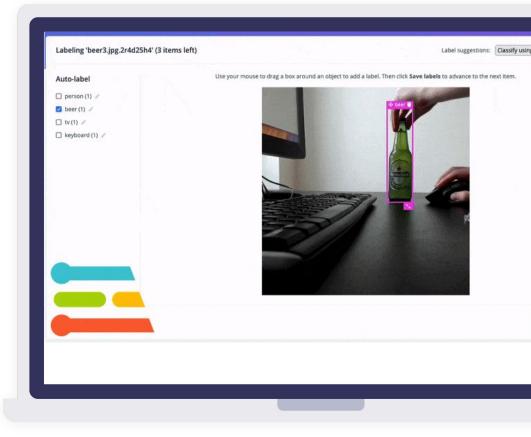
Develop edge ML applications with Edge Impulse

The infrastructure and integrations your data science and ML teams need

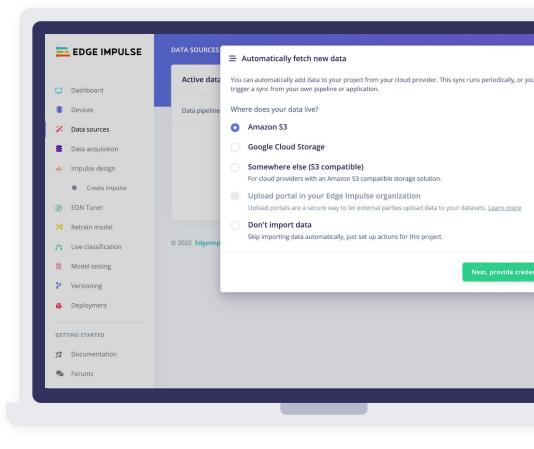


• Tools to collect data directly from devices

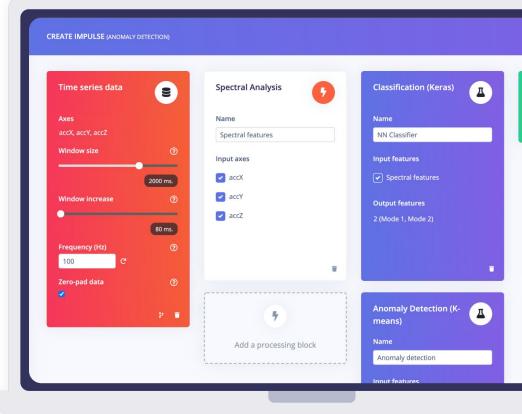
DATA COLLECTED 10m 45s	0	TRAIN / TEST SPLIT 79% / 21% ®		0	Record new data
Collected data			TØ	* 0	Device ③
SAMPLE NAME	LABEL	ADDED	LENGTH		My device
Mode 1.2neds0e2.s3	Mode 1	Today, 20:26:10	3s	1	Label
Mode 1.2neds0e2.s2	Mode 1	Today, 20:26:10	3s	1	Mode 1
Mode 1.2neds0e2.s1	Mode 1	Today, 20:26:10	3s	1	Sensor
Mode 1.2nebrb8o.s25	Mode 2	Today, 19:43:55	Зs	1	Built-in accelerometer
Mode 1.2nebrb8o.s24	Mode 2	Today, 19:43:55	3s	1	
Mode 1.2nebrb8o.s23	Mode 2	Today, 19:43:55	3s	1	
Mode 1.2nebrb8o.s22	Mode 2	Today, 19:43:55	3s	i	RAW DATA Mode 1.2nebrb8o.s22
Mode 1.2nebrb8o.s21	Mode 2	Today, 19:43:55	3s	1	
Mode 1.2nebrb8o.s20	Mode 2	Today, 19:43:55	3s	1	
Mode 1.2nebrb8o.s17	Mode 2	Today, 19:43:55	35	1	



- Tools to collect data directly from devices
- Assisted-labeling tools



- Tools to collect data directly from devices
- Assisted-labeling tools


- The infrastructure data science teams need
- Assisted-labeling tools
- Integrations with most widely used cloud data buckets

Advanced algorithm and ML expertise

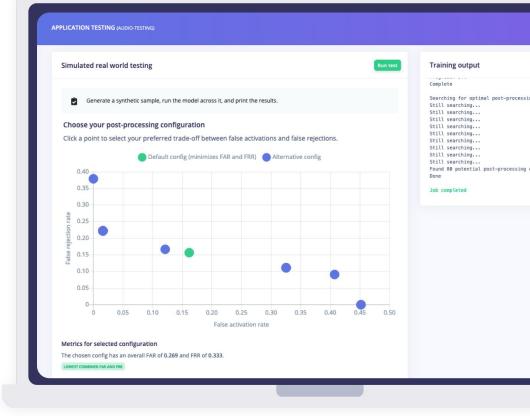
- Advanced algorithm and DSP expertise
- No black boxes
- Explainable AutoML
- Knowledge sharing and collaboration between teams

Advanced algorithm and ML expertise

- Advanced algorithm and DSP expertise
- No black boxes
- Explainable AutoML
- Knowledge sharing and collaboration between teams

	Raw data			jum	iping-ja
Dashboard	3000				
Devices	2000	NA ANANA ANA ANA AN	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
🏏 Data sources	0 -1000 -2000			1111111111111111	FR
Data acquisition	-3000				
✤ Impulse design	0 3008	6016 9024	12032 15040	18048 21056 24	1064
Create impulse					
	Raw features 🌐			DSP result	
 Spectral features 	-352, 0, 48, -1376, 752	, -96, -656, 2032, 1472, -48	0, 2032, 1280,	After filter	
 NN Classifier 				15	
Ø EON Tuner	Parameters)
🔀 Retrain model	Scaling				X
A Live classification	Scale axes	0.01		-5	J
Model testing	Stale axes	0.01		-15	0000
2 Versioning	Filter			0.00 240.00 480.00 720.00	960.0
				Frequency domain	
Deployment	Туре	low	~	9	
GETTING STARTED	Cut-off frequency	3		8 7 6	
				5	

Advanced algorithm and ML expertise


- Advanced algorithm and DSP expertise
- No black boxes
- Explainable AutoML
- Knowledge sharing and collaboration between teams

🔁 EDGE IMPULSE	Neural Network settings		Т	Training outpu	it	
Dathard	Training settings					
 Dashboard Devices 	Number of training cycles ⑦	40		Model		М
Z Data sources	Learning rate ⑦	0.0005		Last training per		e (validati
Data acquisition	Validation set size ③	20	%	% ACCURAG		
✓ Impulse design	Auto-balance dataset ⑦				X (validation	n set)
Create impulse		Auto-balance dataset ()			MPING-JAC	KS NO-M
 Spectral features 					100%	
• spectral reactives	Neural network architecture			NO-MOVEMEN'	0%	1
NN Classifier				REST	0%	1
	Input laye	r (33 features)		SQUATS	0%	
Ø EON Tuner				F1 SCORE	1.00	
🔀 Retrain model	Dense laye	r (16 neurons)		Feature explorer	r (full trainin	g set) 🕐
A Live classification	Dense laye	er (8 neurons)		accX RMS	~	accY RN
Model testing						
Versioning	Dropou	Dropout (rate 0.25)			correct correct	
Deployment	Dense layer (8 neurons)			 rest - correct squats - correct 		3
	Add an	extra layer		• rest - incorrect		
GETTING STARTED					1	
Ø Documentation	Outout la	/er (4 classes)			8 7 6	5 4
		(()			accy	RMS

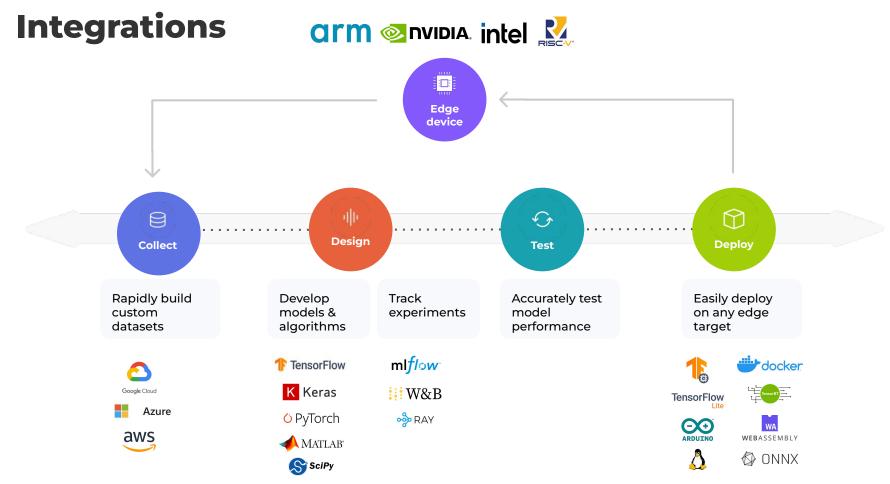
Test

Go to market faster, with confidence

- Hardware-aware development
- Full visibility across the whole ML pipeline
- Test your development against 24hrs of real world data
- Tune the post-processing algorithm to perform optimally

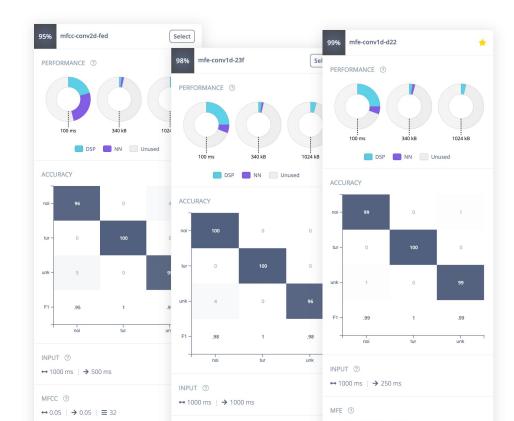
Deploy to any edge device with ease

- The largest silicon ecosystem
- Award-winning compiler
- Get access to full source code
- Full firmware integration for a number of devices
- Digital twin for performance profiling and analysis
- Enable brownfield and future greenfield


DEPLOYMENT (TUTORIAL: CONTINUOUS MOTION RECOGNITION) Deploy your impulse You can deploy your impulse to any device. This makes the model run without an internet connection, minimizes latency, and runs with minimal power consumption. Read more. Create library Turn your impulse into optimized source code that you can run on any device. ARDUINO Arduino library WA **DVIDIA** TensorRT library **Build firmware** Or get a ready-to-go binary for your development board that includes your impulse. END OF LIFE

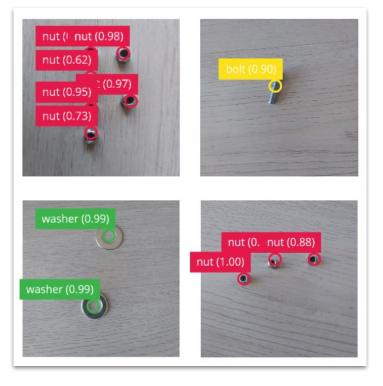
Comprehensive hardware support

Benefit from the leading edge ML silicon ecosystem



Features

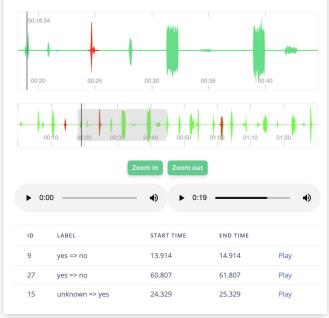
Optimal ML solutions with EON Tuner


- Make the most of limited and heterogeneous compute
- Find the perfect balance between feature extraction and model architecture
- Recommendations based on real performance metrics
- Built for constrained use cases to high end HW and complex use cases (e.g.: high-end CV)
- Suggestions on optimal hardware target for use case

FOMO: Faster objects, more objects

- 20x average performance improvement
- Object detection on MCUs
- Ultra fast on embedded Linux
- Better at detecting smaller and more numerous objects
- Capable of segmentation and counting objects

	Cortex-M4	Cortex-M7	Cortex-A	Nvidia
FOMO	2 fps	15-30 fps	60+ fps	150+ fps
SSD	NA	NA	3 fps	20 fps



Calibrate your application at scale

- Test on realistic samples: 24 hours of real world audio
- Understand the impact of post-processing while accounting for device constraints and latency
- Choose your ideal balance between false activations and false rejections
- Leverage genetic algorithms to design optimal post-processing configuration

Generated audio

Below you can see and play with the generated audio file, which also shows where false positives and negatives appear in the audio.

Customers

CASE STUDY

Advantech increases manufacturing productivity

Visual inspection system to flag delays on the production line in real-time

Vision

- A reported 15% overall increase in production line efficiency
- Faster detection of idle time raises assembly-line productivity
- Managers free up time to focus on production planning and operations

CASE STUDY

Oura goes deeper on deep sleep

Through the use of Edge Impulse's advanced data infrastructure, Oura rapidly improved their algorithm

- Unprecedented sleep-scoring accuracy. A 17% point increase in scoring accuracy
- Improved correlation accuracy of 79%
- Data-driven development process enabled Oura's data science team to scale

CASE STUDY

Nordic and Izoelektro predict power line failure

Smart power grid monitoring that improves the operation, stability, and reliability of electricity distribution."

Current Motion

- Automated monitoring of poles and lines
- NB-IoT with 20 year battery life made possible by ML
- Avoid disastrous wildfires and reduce maintenance costs

USE CASE

Where's my pallet?

Reduce power use on battery operated devices in pallets indoors and outdoors.

Implementation

- Gather vibration / accelerometer data from existing tracking devices in pallets (wood and plastic)
- Label, train model to identify if in a forklift, truck, idle, indoor / outdoor.
- Test in pallets in select service centers

