Introduction to Machine Learning Part I

Mehran Behjati

Layout

What is AI, ML, & DL

ML vs TinyML

ML enablers

ML Limitations

ML Process

What is AI, ML & DL?

Engineering of making Intelligent Machines and Programs

ML vs TinyML

- ML
 - More powerful
 - Longer processing
 - More power consumption

• TinyML

- Less powerful
- Light processing
- Power efficient

Some TinyML Applications

Traditional algorithms vs ML algorithms

ML Categories

Regression

Classification

age	address	income	ed	employ	equip	callcard	wireless	longmon		pager	internet	callwait	confer	ebill	loglong	logtoll	Ininc	custcat	churn
33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	4.40		1.0	0.0	1.0	1.0	0.0	1.482	3.033	4.913	4.0	1.0
33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	9.45	***	0.0	0.0	0.0	0.0	0.0	2.246	3.240	3.497	1.0	1.0
30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	6.30		0.0	0.0	0.0	1.0	0.0	1.841	3.240	3.401	3.0	0.0
35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	6.05		1.0	1.0	1.0	1.0	1.0	1.800	3.807	4.331	4.0	0.0
35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	7.10		0.0	0.0	1.0	1.0	0.0	1.960	3.091	4.382	3.0	0.0

Clustering

• It is unsupervised, so there is no label

ML Enablers

Data availability

Algorithm advancement,

Optimized software library & CMSIS-NN optimization algorithms Open source framework, TensorFlow Lite (TinyML)

Computational power TPU, GPU

Cortex-M, microNPUs (TinyML)

Public/industry interest/demand

ML Limitations

- Probabilistic vs Deterministic
 - ML by its nature is probabilistic
- Data
 - Lack of data in some cases / lack of good data
- Interpretability
- Misapplications

Power and Cycle constraints (TinyML)

- need for HW & SW optimization
- some already addressed e.g., energy efficient Arm Cortex-M55, TensorFlow Lite, SW optimization

ML Process

Data & ML

How to build a dataset for ML

Why do we need data?

Training dataset: The sample of data used to fit the model.

Validation Dataset: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters.

Test Dataset: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.

Some Data Collection Issues

Some solutions for unbalanced dataset

- Up/over sampling
- Down/under sampling
- Feature selection

Some solutions for small size dataset

"what if we only had more data"

- Collect more data.
 - Is it always possible?
- Generate synthetic data (depends upon use case and the final goal)
 - Can we do it manually?
 - Can machine generate useful information?

Some solutions for bias dataset

- Sample bias
 - Covering all the cases you expect your model to be exposed to.
- Exclusion bias
 - Investigate before discarding feature
 - Ask a domain expert
- Observer and prejudice bias
 - Ensure observers are well trained
 - Having clear rules
- Measurement bias
 - Having multiple measuring devices

Data Cleansing & Preprocessing

- Format: The data might be spread in different files
- **Data Cleaning:** the goal is to deal with missing values and remove unwanted characters from the data
- Remove unwanted data
- Manage unwanted outliers
- Handling missing data

Feature Selection and Feature Extraction

- **Feature:** Individual measurable property or characteristic of a phenomenon being observed
- Selection: Choosing a subset of the original pool of features.
- **Extraction:** Getting useful features from existing data.

Train, Validation, and Test Sets

- How to split?
- Mainly depends on:
 - the total number of samples in your data
 - the actual model you are training

Training

Regression models

- Linear regression
- Polynomial
- ...

Classification models

- KNN
- Decision tree
- Logistic regression
- SVM
- ...

• Clustering models

- K-means
- Hierarchy
- DBSCAN
- ...

Regression

Classification

Finding Patterns

Model

Overfitting & Underfitting

- **Underfitting:** Model performs poor under both training and test sets.
- Solutions:
 - Add more data
 - Try different features or more features
 - Try for longer
 - Reduce dropout nodes
 - Try a more complex model (increasing #layer & #neurons)
- **Overfitting:** Model predicts training data well but fails to generalize to test data.
- Solutions:
 - Add more data / data augmentation
 - Early stopping
 - Reduce model complexity (reducing #layer & #neurons)
 - Add dropout nodes

High training error High test error

Low training error High test error

Optimum

Low training error Low test error

Evaluation

- How we can evaluate the performance of our developed model?
- Metrices:
 - Root Mean Squared Error (RMSE)
 - Mean Absolute Percentage Error (MAPE)
 - Median Absolute Error (MedAE)
 - Accuracy
 - Confusion matrix

Confusion Matrix

- A performance measurement for ML classification.
- Applicable for two or more class classification problems.
- Useful for measuring

•
$$Recall = \frac{TP}{TP+F}$$

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$F1 = 2 \times \frac{Precision \times Recall}{Precision \ Recall}$$

ACTUAL VALUES

Resources

Edge Impulse Introduction to Embedded Machine Learning Skills you'll gain: Machine Learning

☆ 4.8 (330 reviews) Intermediate · Course · 1-4 Weeks

