Preparation:

1. Get Started with Wio Terminal
2. Connect Wio Terminal with Edge Impulse
3. Add some necessary Arduino libraries

Get Started with Wio Terminal

Step 1. You need to Install_ Arduino Software.

Download Arduino IDE

Launch the Arduino application

Double-click the Arduino IDE application you have previously downloaded.

Step 2. Add the Wio Terminal Board Library

1. Open your Arduino IDE, click on File > Preferences, and copy the below URL
to Additional Boards Manager URLs:

https://files.seeedstudio.com/arduino/package seeeduino boards index.j

son


https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

Preferences

Sketchbook location:

Show verbose output during:
Compiler warnings: N
Display line numbers
Verify code after upload

Check for updates on startup
| Use accessibility features

Additional Boards Manager URLs:

/Users /ansonhe/Library/Arduinol

/Users /ansonhe/Documents /Arduino Browse
Editor language: English (English) (requires restart of Arduino)
Editor font size: 12
Interface scale: Automatic 100 Z 9% (requires restart of Arduino)

Theme: Default theme (requires restart of Arduino)

More preferences can be edited directly in the file

(edit only when Arduino is not running)

compilation upload

one

| Enable Code Folding
| Use external editor
(] Save when verifying or uploading

ttps://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json

5/preferences.txt

OK Cancel

2. Click on Tools > Board > Board Manager and Search Wio Terminal in the

Boards Manager.

Boards Manager

Type | All

Wio Terminal

- Seeed SAMD Boards

——————
by Seeed Studio version 1.6.0 INSTALLED
Boards included in this package:

duino XIAO MO, dul

Femto MO, Seeedulno Zero, Seeeduino LoRaWAN, Wie GPS Board, Seeeduine Wie Terminal.

Online Help
More Info

Select version B

duino_Lotus_MO, S

Seeeduino_SAMD_zero

by Seeed Studie version 1.0.0 INSTALLED
Boards included in this package:

Install Update Remove

duinc_Cortex_M0+, Seeeduino_Wio_Lite_WE&00.

Online Help
More Info

Close

The keyword is Wio Terminal



Step 3. Select your board and port
You'll need to select the entry in the Tools > Board menu that corresponds to your
Arduino. Selecting the Wio Terminal.

Arduino File Edit Sketch  Tools Help

Auto Format
Archive Sketch Arduino Uno

Fix Encoding & Reload Arduino Duemilanove or Diecimila
Manage Libraries... Arduino Nano

Serial Monitor Arduino Mega or Mega 2560

2 Blink Serial Plotter Arduino Mega ADK

3 5

& Turns an LED on for one second WIFI101 / WIFININA Firmware Updater ::gz::z t:g:::gz -
6 Most Arduinos have an on-board Blynk: Check for updates Arduino Micro

7 it is attached to digital pin 1 Blynk: Example Builder Arduino Esplora

8 the correct LED pin independent Blynk: Run USB script Arduino Mini

9 If you want to know what pin thd Arduino Ethernet

10 model, check the Technical Spec=TETHRCIYYYe NTo R il r=Nen T 1
11  https://www.arduino.cc/en/Main/Her e SVl S N Yo U

CPU Speed: "120 MHz (standard)"
Optimize: "Small (-Os) (standard)"

Arduino Fio

Arduino BT

LilyPad Arduino USB
LilyPad Arduino

13 modified 8 May 2014
14 by Scott Fitzgerald

VYVVYVYYVYY

15 modified 2 Sep 2016 Max QSPI: "50 MHz (standard)" Arduino Pro or Pro Mini

1(75 by;\;tu;og&;ada;;zé UsSB Sta"ck: "‘.Ardumo" Arduino NG or older

18 Z‘; éo{Ey et DEIRUER i . Arduino Robot Control

19 Port: "/dev/cu.usbmodem141401 Arduino Robot Motor

20 This example code is in the pub Get Board Info Arduino Gemma

21 Adafruit Circuit Playground
. 1 Programmer: "AVRISP mkiI"

22 http://www.arduino.cc/en/Tutori i - Py

23 %/ | Burn Bootloader Arduino Y(in Mini

24 Arduino Industrial 101

25 // the setup function runs once when you press reset or power the board Linino One

26 void setupQ) { Arduino Uno WiFi

27 // initialize digital pin LED_BUILTIN as an output. 5

28  pinMode(LED_BUILTIN, OUTPUT); Seeed SAMD (32-bits ARM Cortex-MO+ and Cortex-M4) Boards

29} v Seeeduino Wio Terminal

30 Seeeduino XIAO MO

31 // the loop function runs over and over again forever
32 void loopQ)
33  digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage l¢

Seeeduino Femto MO
Wio GPS Board

34 delay(1000); // wait for a second Seeeduino Zero
35 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage Seeeduino LoRaWAN
56 An1evc1000N e < A

Choose the right board

Select the serial device of the Wio Terminal board from the Tools -> Port menu. This
is likely to be COM3 or higher (COM1 and COM2 are usually reserved for hardware
serial ports). To find out, you can disconnect your Wio Terminal board and re-open
the menu; the entry that disappears should be the Arduino board. Reconnect the
board and select that serial port.

Note

For Mac User, it will be something like /dev/cu.usbmodem141401



@ Blink | Arduino 1.8.10 Arduino File Edit Sketch Tools Help

File Edit Sketch Tools Help Auto Format Blink | Arduino
Auto Format cul+T Archive Sketch
Archive Sketch Fix Encoding & Reload
Blink Fix Encoding & Reload Manage Libraries... 0%l
Manage Libraries... Ctrl+Shift+1 1y Serial Monitor 08M
Serial Monitor Ctrl+Shift+M 2 Blink Serial Plotter %L
Serial Plotter Crl+Shift+L 3
‘ . X 4 Turns an LED on for one second, [EERUIEUGWAIENINENSUUEIEIVEGE G

WiFi101 / WIFININA Firmware Updater 5
T 6 Most Arduinos have an on-board LSEEUAISESUEEEIEELLES]
T o Bulld 7 it is attached to digital pin 13EEUIIIENTIEY: T

lynk: Example Builder 8 the correct LED pin independent [-TN - MU -Roat

Blynk: Run USB script 9 If you w to know what pin thd

Board: "Seeeduino ReScreen (SAMDS51)" > 10 mo the Technical Specq eeeduino Wio Terminal" >
1 https arduine. cc/en/Main/f nabled" >

Cache: "Enabled" > 12 i

CPU Speed: "120 MHz (standard)® > 13 modified 8 May 2014 e 20 MHz (slandard)" 4

Optimize: *Small (-Os) (standard)* > 14 by Scott Fitzgerald mall (-Os) (s‘a"da:d' Lo

Max QSPI: “50 MHz (standard)” 4 15 modified 2 Sep 2016 Max QSPI: "50 MHz f‘standavd) >

USB Stack: "Arduino” > 16| by Arturo Guadalupi USB Stack: "Arduino >

i 17 modified 8 Sep 2016 Debug: "Off* »

Debug: "Off’ 24 18 by Colby Newman o # 2

o5 B seralpors P Port: */dev/cu.usbmodem141401 »  Serial ports

Get Board Info comg 20 This example code is in the publ /dev/cu.AnsonHesPowerbeats3-SPP-2
21 rogrammer: "AVRISP mill* /dev/cu.AnsonHesPowerbeats3-Wir

Programmer: *AVRISP mkil* > 22 http: .arduino. cc/en/Tutor: e /dev/cu.Bluetooth-Incoming-Port

Burn Bootloader 2% Burn Bootloader /dev/cu.BoseRevolveSoundLink-SP-1
24 /dev/cu.BoseRevolveSoundLink-SP-3
25 // the setup function runs once when you press reset or power the board  Idevicu.usbmodem141401

26 void setupQ {

Step 4. Upload the program

Open the LED blink example sketch: File > Examples >01.Basics > Blink.

Arduino File Edit Sketch Tools Help
[ New #N Blink | Arduino 1.8.12

Open... #0 | 01.Basics AnalogReadSerial
Open Recent > 02.Digital BareMinimum
Blink Sketchbook »> 03.Analog Blink
1/+ Examples > 04.Communication DigitalReadSerial
2 Blink Close #W 95 Control Fade
| Save #8S 06.Sensors ReadAnalogVoltage
Turns an LHEEECEIVEY Y 07.Display
08.Strings
09.USB

Most Ardui Page Setup

3
4
5
6
Print

10 Ctartarkit Raciclit

Blink Path

Now, simply click the Upload button in the environment. Wait a few seconds and if
the upload is successful, the message "Done uploading." will appear in the status
bar.

Blink | Arduino 1

1/*

Upload the code



A few seconds after the upload finished, you should see the LED at the bottom of the
Wio Terminal start to blink. If it does, congratulations! You've gotten Wio Terminal
up-and-running. Please feel free to go through the Wiki of Wio Terminal and start
building your projects!

Connect Wio Terminal with Edge Impulse

Step1: Create a new Edge Impulse project

Please Open:_htips://www.edgeimpulse.com/

Login first, then create a new project.

WELCOME!

& vour profile

4+ Create new project

Step 2: Connect the development board to your computer

Connect Wio Terminal to your computer. Entering the bootloader mode by sliding the power

switch twice quickly. For more reference, please also see here.

_'—(103030

Enter Bootloader:
slide the switch further away from “ON"”
i position, let go and slide again



https://wiki.seeedstudio.com/Wio-Terminal-Getting-Started/
https://www.edgeimpulse.com/
https://wiki.seeedstudio.com/Wio-Terminal-Getting-Started/#faq

An external drive named Arduino should appear on your PC. Drag the downloaded Edge

Impulse uf2 firmware files to the Arduino drive. Now, Edge Impulse is loaded on Wio

Terminal!

= < Manage  Arduino (H - o X
Home  Share  View | Drive Tools ~ @

* U & cut . x i 3 New item ~ open - [ select all

N Copy path 1] Easy access ~ Edit Select none
Pinto Quick Copy Paste Move Copy Delete Rename  New Properties

access [#] paste shorteut to = s pHisory (7 Invert selection

Clipboard Organize New Open Select
« v P w- > ThisPC > Arduino (H:) v O P Search Arduino (H:)

~

@ OneDrive 2 CURRENT.UF2 @ INDEXHTM

|5 INFO_UF2TXT
D WPSPIfE

" This PC
_J 3D Objects

[ Desktop )
- NS

% Dounout 7 e s + Copy to Arduino (H:)
ownloads

b Music

[=] Pictures.

m Videos

& Local Disk (C)

w Local Disk (D:)
w Local Disk (E3)
- Local Disk (F)
= Arduino (H:)

3 items ==

Step3: Connect using WebUSB

Go to your Edge Impulse project, and click the Data acquisition tab, then you can see the

selection "Connect using WebUSB" on the upper right. Click it.

—

Record new data [“E‘ Connect using WebUSB J

4 No devices connected to the remote management API.

RAW DATA

Click on a sample to load...

Then, you can see a pop-tip, select the paired serial port and "Connect" as the following

picture.


https://github.com/Seeed-Studio/Seeed_Arduino_edgeimpulse/releases/tag/1.4.0
https://github.com/Seeed-Studio/Seeed_Arduino_edgeimpulse/releases/tag/1.4.0

studio.edgeimpulse.com wants to connect to a serial port

Seeed Wio Terminal (COM12) - Paired

Now, you have successfully connected the Wio Terminal with the Edge Impulse.

Record new data

Device ®
13:B5:FF:15:1D:2B v
Label Sample length (ms.)
10000
Sensor Frequency
Built-in light sensor v 100Hz v

Start sampling

Now, all the preparations have been done, we can start our projects!

Add some necessary Arduino libraries
Step1:Download the library

Visit the following repositories and download the entire repo to your local drive when you are
doing the corresponding Practice.

Practice 1: none



Practice 2: Seeed_Arduino_LCD . Grove 3 Axis Digital Accelerometer

Practice 3: Seeed_Arduino_LCD
Practice 4: Seeed_Arduino_LvGL. Grove Ultrasonic Ranger. Seeed_Arduino_LCD.

Arduino_FreeRT
Practice 5: Grove BME280. Seeed Arduino LCD

Step2: Open the Arduino IDE, click sketch -> Include Library -> Add .ZIP Library, and

choose the file that you have just downloaded.

@ Arduino File Edit BGCWR Tools Help

®Ce Verify/Compile #R [ Manage Libraries...
Upload #®U
Upload Using Programmer  {+38U LG RVAILNE .13
[ Export compiled Binar N 3#S

Test:nu = AP L A Arduino libraries

1 void setup "

2 // put your setup code here Show Sketch Folder #K Bndge

3 Include Library Esplora

‘5‘ } Add File... Ethernet

Practice 1. Gesture recognition using built-in light sensor
(Rock, Vulcan)

Project Overview

In this lesson, we are going to train and deploy a simple neural network for classifying Rock,

Vulcan gestures with just a single light sensor.


https://github.com/Seeed-Studio/Seeed_Arduino_LCD
https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR
https://github.com/Seeed-Studio/Seeed_Arduino_LCD
https://github.com/Seeed-Studio/Seeed_Arduino_LvGL
https://github.com/Seeed-Studio/Seeed_Arduino_UltrasonicRanger/archive/master.zip
https://github.com/Seeed-Studio/Seeed_Arduino_LCD
https://github.com/Seeed-Studio/Seeed_Arduino_FreeRTOS
https://github.com/Seeed-Studio/Grove_BEM280
https://github.com/Seeed-Studio/Seeed_Arduino_LCD

Material Preparation
Hardware requirements: Wio Terminal

Connection method:

—EORE HTULEE

About Sensor: Built-in Light Sensor

() seeed

@
CEE=

The working principle of this project is quite trivial. Different gestures being moved above the
light sensor will block a certain amount of light for certain periods of time. For example, for
“Rock”, we will have high values at first (nothing above the sensor) but lower values when
"Rock" passes above the sensor and then high values again. For “Vulcan”, we will have
high-low-high-low-high-low-high-low values when each of the fingers in "Vulcan" passes

above the sensor.



Rock .

Vulcan

There is a high variance in speed and amplitude of the values from the sensor which makes
a great case for using a machine learning model instead of a hand-crafted algorithm for the

task.

Machine Learning Lifecycle

Please Open: https://www.edgeimpulse.com/

Data Collection
Step1: Connect Wio Terminal with Edge Impulse
Step2: Know what we are going to do

We are going to train and deploy a simple neural network for classifying rock, Vulcan

gestures with just a single light sensor. So we need to select the sensor we are going to use


https://www.edgeimpulse.com/

-- the built-in light sensor, then know what kind of data we are going to sample --gestures of

Rock & Vulcan.

Select the sensor we are going to use -- Built-in light sensor

Record new data

Device @
13:B5:FF:15:1D:2B v
Label Sample length (ms.)
10000
Sensor Frequency
Built-in light sensor v 100Hz v

Built-in accelerometer
Built-in microphone
Built-in light sensor
External multichannel gas(Grove-multichannel gas v2)

External temperature&humidity&pressure sensor(Grove-BME280)
External pressure sensor(Grove-DPS310)

External distance sensor(Grove-TFmini)

External 6-axis accelerometer(Grove-BMI088)
External ultrasonic sensor(Grove-ultrasonic sensor)
External CO2+Temp sensor(Grove-SCD30)

Start sampling

This indicates that we want to record data for 10 seconds (Sample length 10000ms), use a
built-in light sensor and set the frequency to 100Hz.

Know the data we are going to sample -- Rock & Vulcan

Rock

HiNE E75s
Make a fist above the

transparent square on my back

4'>




Vulcan

BEERNSEERNE LS
EEENREFL
Do a vulcan salute above the

transparent square on my back.

< ¥

Environment

Sample the data of the Environment around you.

Step3: Sample

Record new data

Device @
10:E8:FF:12:18:3F w
Label Sample length
(ms.)
RocH
10000
Sensor
Frequency
Built-in light sensor v
100Hz v

Start sampling

Enter the label(label the recorded data as “Rock” here, we can later edit ), click "Start
Sampling", then do the gesture "Rock" shown in step 2 in a continuous motion. In about
twelve seconds the device should complete sampling and upload the file back to Edge

Impulse.

Attention:



1. The light sensor location.

ELHREESEEE OSHRE
Please let the transparent window on the
back of me face the light

2.

We see a new line appear under 'Collected data' in the studio.

We will be able to preview the data collected after the sample collection is finished. Make

sure that the data is valid before proceeding to collect the next sample.

4 No devices connected to the remote management API

Collected data A g E
RAW DATA
rock.2aeedpc2

rock.2aettfpm rock Jul 142021, 18:33...  10s

rock.2aetrfiv rock Jul 14 2021, 18:32...  10s

rock.2aegkiuj rock Jul 142021, 14:41...  10s

rock.2aegg2jk rock Jul 14 2021, 14:39...  10s

rock.2aeedpc2 rock Jul 14 2021, 14:03...  10s

rock.2aeec2fd rock Jul 14 2021, 14:02...  10s

rock.2aeeaef7 rock Jul 14 2021, 14:01...  10s

Y X

Do the same thing to sample “Vulcan” and “Environment”.

Now, we have recorded around 1 minute of data per class:



Training data Test data | Export data

DATA COLLECTED

3m 0s

Impulse Design

After you collected the samples it is time to design an “impulse”.

—- EDGE IMPULSE

Dashboard
Devices

Data acquisition

E (N

Impulse design

@®  Create impulse

The impulse here is the word Edge Impulse used to denote data processing — training

pipeline.

Time series data e

Input axes

Output features °

Distance

Window size ®@

—e

1000 ms.

Window increase ®@

-

1000 ms.

Frequency (Hz)

Zero-pad data

v




An impulse takes the raw data, slices it up in smaller windows, uses signal processing

blocks to extract features, and then uses a learning block to classify new data.

Set as follows in this project.

Time series Raw Data Classification
data (Keras)

Input axes Name Name

lNlumination Raw data NN Classifier

Window size ®@
-

Output
features

3 (ENV, Vulcan, rock)

Input axes (1) Input features

1000 ms. lurmination Raw data

Window increase @

Output features

3 (ENV, Vulcan, rock)
100 ms.

Frequency (Hz) @
100

Zero-pad data ©)
%

These settings mean that each time an inference is performed we're going to take sensor
measurements for 1000 ms. - how many measurements your device is going to take
depends on the frequency. During data collection, we set the sampling frequency to 100 Hz
or 100 times per 1 second. So, to sum it up, our device is going to gather 100 data samples
within 1000 ms. time window and then take these values, preprocess them and feed them to
the neural network to get inference results. Of course, we use the same window size during

the training.

In all, set the window size to 1000 (you can click on the 1000 ms. text to enter an exact
value), the window increases to 100, add the 'Raw data' and ‘Classification(Keras)' blocks.

Then click Save impulse.

Feature Extraction--RAW Data

To configure your signal processing block, click Raw data in the menu on the left.



& Data acquisition

Impulse design

®  Create impulse

@ FRawdata

» Classifie
= ECN Tune

we use the default parameter and click “Save parameters” then click “Generate features” to

start the process.

Parameters

Scaling

Scale axes 1

Afterwards the 'Feature explorer' will load. This is a plot of all the extracted features against
all the generated windows. You can use this graph to compare your complete data set. A

good rule of thumb is that if you can visually separate the data on a number of axes, then the

machine learning model will be able to do so as well.



X Axis Y Axis Z Axis

Visuglization layer 1 A4 Visualization layer 2 s Visualization layer 3 A

®  ENV
®  Vulcan
®  rock

o

Wiy,

w 2 =

Visualization |ayer 1

Model Training--Network: MLP
To configure our learning block, click “NN Classifier” in the menu on the left.
4+ Impulse design
® Create impulse

® Rawdata

® NN Classifier

We create a simple neural network — MLP (Multilayer perceptron) here.

Neural Network settings

Training settings
Number of training cycles @ 30
Learning rate @ 0.0005

Neural network architecture

Input layer (100 features)

‘ Dense layer (64 neurons) ‘

‘ Dense layer (32 neurons) ‘

Add an extra layer

Output layer (3 classes)

Start training



Click on“Start training”.

By observing the “Log”, you can deduce the model performance.

Training output Cancel =
Epoch 4/38 "
41/41 - 1s - loss: 1.8479 - accuracy: 8.7977 - val_loss: 8.9865 - val_accuracy:
8.9824
Epoch 5/38@
41/41 - 1s - loss: 8.9787 - accuracy: ©8.8931 - val loss: 8.9381 - wval_accuracy:
8.8811
Epoch 6/3@
41/41 - 1s - loss: B8.8653 - accuracy: @.8954 - val loss: 8.8424 - val_accuracy:
8.8811
Epoch 7/38@
41/41 - 1s - loss: B.7583 - accuracy: 8.9168 - val_loss: 8.9121 - val_accuracy:
8.8689
Epoch 8/38@
41/41 - 1s - loss: B.9687 - accuracy: 8.8786 - val_loss: 8.7972 - val_accuracy:
8.9177
Epoch 9/38@
w

The number of Training Cycles is also called an epoch. It specifies the number of times that
the entire training dataset passes through the training process of the algorithm. With each

epoch, the internal model parameters will update, which may help the model perform better.
As the training log shows, “Epoch: 8/30” indicates the total number of training rounds is 30

while 8 rounds have been trained. Training accuracy has been achieved 0.8786.



Model Model version: ®

Last training performance (validation set)

ACCURACY LOSS
95.7% 0.82
Confusion matrix (validation set)

ENV VULCAN ROCK

VULCAN 2.8% 92.6% 4.6%

ROCK 0% 5.4% 94.6%

F1 SCORE 0.99 0.93 095

Now, the Model training is complete.

After we have our model and are satisfied with its accuracy in training, we can test it on new

data in the Live classification tab.

7% Live classification

If the live classification gets poor performance, we need to analyze the reason and retrain
our model. We will talk about it in future projects.

Model Optimization

There are various ways of optimizing machine learning models: compression, pruning and
quantization. Compression is the process of reducing the size of a machine learning model.
Pruning is the process of removing the weights of unimportant neurons from a machine

learning model.

Quantization is the process of converting floating point numbers to integers.



Model Model version: @

Last training performance (validation set)

ACCURACY LOSS
95.7% 0.82

Confusion matrix (validation set)

ENV VULCAN ROCK
ENV 100% 0% 0%
VULCAN 2.8% m 4.6%
ROCK 0% 5.4% 94.6%
F1 SCORE 0.99 0.93 0.95

This is done to save space and time. These optimisations not only make the model run

faster but also help to reduce the memory consumption requirements of the system.

Model Deployment

The next step is deployment on the device.
Step 1: After clicking on the Deployment tab, choose Arduino library and download it.

Deploy your impulse

You can deploy your impulse to any device. This makes the model run without an internet connection,
minimizes latency, and runs with minimal power consumption. Read more.

Create library

Turn your impulse into optimized source code that you can run on any device.

C++ library Arduino library Cube MX CMSIS-PACK

WebAssembly




Step 2: Now, the library can be installed to the Arduino IDE. Open the Arduino IDE, click
sketch -> Include Library -> Add .ZIP Library, and choose the file that you have just

downloaded.

@ Arduino File Edit Tools Help
‘00 @ Verify/Compile
Upload :

Upload Using Programmer Add .Z|P Library...
Export compiled Binary XHS

Test.ino - 5 .
Arduino libraries
1 void setup() { [

2| /7 put your setup code herel Show Sketch Folder 8K Bridge
3 Include Library Esplora

: } Add File... Ethernet

Step 3: Open Examples -> name of your project -> static buffer.

static_buffer

#include <Gesture recognition inferencing.h: your pmject lib rary name

Step 4: Copy the following Example Code to replace the original example code:

#include <project_71231_inferencing.h> //replace with your project library name

ei_impulse_result_classification_t
currentClassification[EI_CLASSIFIER_LABEL_COUNT];
const char* maxConfidencelabel;

void runClassifier()
{
float buffer[EI_CLASSIFIER_DSP_INPUT FRAME_SIZE] = { @ };
uint8 t axis_num = 1;
for (size_t ix = ©; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += axis_num) {
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);
buffer[ix + @] = analogRead(WIO_LIGHT);
delayMicroseconds(next_tick - micros());

}

signal t signal;



int err = numpy:: signal_ from_buffer(buffer,
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
ei_impulse_result_t result = { 0 };

err = run_classifier(&signal, &result, false);
float maxValue = 0;
for (size t ix = ©; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_impulse_result_classification_t classification_t =
result.classification[ix];
ei printf(" %s: %.5f\n", classification_t.label, classification_t.value);
float value = classification_t.value;
if (value > maxValue) {
maxValue = value;
maxConfidencelLabel = classification_t.label;

}

currentClassification[ix] = classification_t;

void setup(){
Serial.begin(9600);

}

void loop(){
runClassifier();
Serial.println(maxConfidencelLabel);

}

Step 5: Upload the code.

It takes about 5 mins to upload. If the upload is successful, the message "Done uploading.”
will appear in the status bar.

Step 6: Open the Serial monitor. Move your hand while performing a gesture and see the

probability result printed out on the Serial monitor.

Environment



@ COoM16

Vulcan: 0.02344

rock: 0.00000
ENV

ENV: 0(0.87105

Vulcan: 0.128%1

rock: 0.00000
ENV

ENV: (0.87109

Vulcan: 0.12891

rock: 0.00000
ENV

ENV: 0.55%215

Vulcan: 0.00781

rock: 0.00000
ENWV

[«]Autoseroll [ |Show timestamp

Rock:

@ CoMm16

Vulcan: 0.00781

rock: 0.00000
ENV

ENV: 0.00000

Vulcan: 0.00000

rock: 0.9%60%
rock

ENV: 0.00000

Vulcan: 0.00000

rock: 0.55609
rock

ENV: 0.00000

Vulcan: 0.00000

rock: 0.99609

rock

[«]Autoscroll [ |Show timestamp

Vulcan:



@ COM16

Vulcan: 0.034659

rock: 0.00000
ENWV

ENV: 0.594531

Vulcan: 0.05465

rock: 0.00000
ENV

ENV: 0.00000

Vulcan: 0.59%&609

rock: 0.00000
Vulcan

ENV: 0.00000

Vulcan: 0.87109

rock: 0.12891

Vulcan

[«]4utoscroll [ |Show timestamp

Now, the model may perform well with recognizing your gestures but is poor at dealing with
other people's “Rock”& “Vulcan”.

You can optimize your model as follows:

When collecting samples it is important to provide diversity for the model to be able to
generalize better, for example, have samples with different directions, speeds and distances
from the sensor. In general, the network only can learn from data present in the dataset — so
if the only samples you have are gestures being moved from left to right above the sensor,
you shouldn’t expect the trained model to be able to recognize gestures being moved right to
left or up and down.

Collect more data samples in different light conditions.

While it was just a proof of concept demonstration, it really shows TinyML is up to
something big. You probably knew it is possible to recognize gestures with a camera sensor,
even if the image is down-scaled a lot. But recognizing gestures with just 1 pixel is an

entirely different level!

Congratulations, we have done our first project!



Reference

Edge Impulse Public project:

https://studio.edgeimpulse.com/public/76967/latest

Practice 2. Motion Recognition using built-in
accelerometer (Flip, Wave, Idle)

Project Overview

In this lesson, we'll take on a similar task, motion recognition, but will use a different sensor
for that - a 3-axis accelerometer. This is a hard task to solve using rule-based programming,
as people don't perform gestures in the exact same way every time. But machine learning

can handle these variations with ease.

Material Preparation
Hardware requirements: Wio Terminal

Connection method:



About sensor: accelerometers

As you might guess from the name, accelerometers are devices that measure the
acceleration of a body. It is defined as the rate of change of the velocity of an object.
Accelerometers are capable of measuring acceleration either in meters per second squared
(m/s2) or in G-forces (g). A single G-force on Earth is equivalent to 9.8 m/s2. There are
different kinds of accelerometers. The earliest accelerometers were based on mechanical

architecture.

The first accelerometer was called the Atwood machine. It was invented by an English

physicist George Atwood.

Big. 5.
Atwoodide Fallmajdine



The accelerometers commonly used in mobile phones are MEMS (Microelectromechanical)

accelerometers.

2.Mass takes time to move

LIt

1.Mass suspended inside box 3.Pen leaves trace on paper

The module used in Wio Terminal is called 3-Axis Digital Accelerometer (LIS3SDHTR).
Generally, the internal structure of accelerometers consists of Capacitive Plates. Some types
of accelerometers use fixed capacitive plates, while some of them have the plates attached
to minuscule springs that move internally depending upon the acceleration forces acting on

the sensor.

1.Mass presses capacitor plate 2.Mass closes plates, changing capacitance

Machine Learning Lifecycle

Please Open: https://www.edgeimpulse.com/
Data Collection

Step1: Connect Wio Terminal with Edge Impulse

Step2: Know what we are going to do

We are going to train and deploy a simple neural network for classifying Flip, Wave, Idle
motion with just an accelerometer. So we need to select the sensor we are going to use -- a
built-in accelerometer, then know what kind of data we are going to sample --the motion of

“Flip”, “Wave”, “Idle”.


https://www.edgeimpulse.com/

Select the sensor we are going to use -- Built-in accelerometer

Record new data

Device @
13:B5:FF:15:1D:2B v
Label Sample length (ms.)
10000
Sensor Frequency
Built-in accelerometer v 62.5Hz v

Built-in accelerometer

Built-in microphone )
Built-in light sensor
External multichannel gas(Grove-multichannel gas v2)

External temperature&humidity&pressure sensor(Grove-BME280)

External pressure sensor(Grove-DPS310)

External distance sensor(Grove-TFmini)

External 6-axis accelerometer(Grove-BMI088)

External ultrasonic sensor(Grove-ultrasonic sensor)

External CO2+Temp sensor(Grove-SCD30)

This indicates that we want to record data for 10 seconds (Sample length 10000ms), use the

built-in accelerometer and frequency 62.5Hz.

Know the data we are going to sample -- Flip, Wave, Idle
* |dle - just sitting on your desk while you're working.

* Flip - turn device, similar to how you would turn a valve

* Wave - waving the device from left to right.

Idle




RIBIETRHHREBEE. REMNEEESIRE,

Turn me over as instructed below.
I'll recognize it.

A

- 4
e R

wave

TBIREFRMKFRE. REBMRKERN

Take me and do horizonal waves as instructed

below. | think | can recognize it.

¢ =

Step3: Sample

Record new data

Wave

Start sampling

l ‘



Enter the label, click "Start Sampling", then do the gesture “Wave” shown in step 2 in a
continuous motion. In about twelve seconds the device should complete sampling and
upload the file back to Edge Impulse. You see a new line appear under 'Collected data' in the
studio. When you click it you now see the raw data graphed out. As the accelerometer on

the development board has three axes you'll notice three different lines, one for each axis.

RAW DATA

wave.2bff35h5

Note

Make sure to perform variations on the motions. E.g. do both slow and fast movements and

vary the orientation of the board. You'll never know how your user will use the device.
Gather data from 2 other people, except for yourself.

Now, we have recorded around 1min of data per class:

Testdata | Exportdata

DATA COLLECTED
3m0s

Impulse Design

With the training set in place, we can design an impulse.



Time series Spectral Classification
data Analysis (Keras)
Input axes (3) Name Name

accX, accY, accZ Spectral features NN Classifier

Window size @
—

Output
features

3 (flip, idle, wave)

Input axes (3) Input features

Save Impulse
2000 ms. accX Speciral features
Window increase ® accY

o accZ

80 ms.

Output features

3 (flip, idle, wave)

Frequency (Hz) @

I -

Zero-pad data ®@
v

Signal processing blocks always return the same values for the same input and are used to
make raw data easier to process, while learning blocks learn from past experiences. For this
tutorial, we'll use the 'Spectral analysis' signal processing block. This block applies a filter,

performs spectral analysis on the signal, and extracts frequency and spectral power data.
Then we'll use a 'Neural Network' learning block, that takes these spectral features and

learns to distinguish between the three (ldle, Flip and Wave) classes.

In all, set the window size to 2000 (you can click on the 2000 ms. text to enter an exact
value), the window increases to 80, and adds the 'Spectral Analysis' and 'Classification

(Keras)' blocks. Then click Save impulse.

Feature Extraction--Spectral Analysis

To configure your signal processing block, click Spectral features in the menu on the left.



S Data acquisition
A Impulse design

@® Create impulse

®  Spectral features

@] NN Classifier

This will show you the raw data on top of the screen (you can select other files via the

drop-down menu).

Raw data wave.2pdo1sn5 (wave) v~

And the results of the signal processing through graphs on the right.

For the spectral features block you'll see the following graphs:

* After filter - the signal after applying a low-pass filter. This will remove noise.

* Frequency domain - the frequency at which signal is repeating (e.g. making one wave
movement per second will show a peak at 1 Hz).

» Spectral power - the amount of power that went into the signal at each frequency.



DSP result

After filter

30

30

0.00 208.00 A16.00 624.00 832.00 10:0.00 1242.00 1456.00 1664.00 1872.00

Frequency domain

16

0.00 359 77 10.76 1434 17.53 2152 2510 2869

Spectral power

jei3
e+
Te+D

0.00 342 6.84 10.25 1367 17.09 20.51 2353 27.34

A good signal processing block will yield similar results for similar data. If you move the
sliding window (on the raw data graph) around, the graphs should remain similar. Also, when
you switch to another file with the same label, you should see similar graphs, even if the

orientation of the device was different.



Parameters

Scaling

Scale axes

Filter

Type

Cut-off frequency

Order

Spectral power

FFT length

No. of peaks

Peaks threshold

Power edges

low

128

0.1

0.1,05,1.0,2.0,5.0

Click “Save parameters” then click “Generate features” to start the process.

Afterwards the 'Feature explorer' will load. This is a plot of all the extracted features against

all the generated windows. You can use this graph to compare your complete data set.



Feature explorer (1,818 samples)

@
X Axis Y Axis Z Axis
accX RMS v accY RMS v accZ RMS v
o flip
o idle
L] wave

SINY Z29®

Model Training--Network: MLP

With all data processed it's time to start training a neural network.
To configure our learning block, click “NN Classifier” in the menu on the left.

v Impulse design
® Createimpulse

®  Spectral features

@® NN Classifier

Neural networks are a set of algorithms, modeled loosely after the human brain, that is
designed to recognize patterns. The network that we're training here will take the signal

processing data as an input, and try to map this to one of the three classes.

We create a simple neural network — MLP (Multilayer perceptron) here.



Neural Network settings

Training settings

Number of training cycles ® 10
Learning rate ® 0.001
Validation set size @ 20 %

Auto-balance dataset @

Neural network architecture

Input layer (33 features)

Dense layer (20 neurons)

Dense layer (10 neurons)

Add an extra layer

Output layer (3 classes)
Start trai

Now, the Model training is complete.



Model version: @ | Quantized (int8) «

Model

Last training performance (validation set)

ACCURACY Loss
99.7% 0.02

Confusion matrix (validation set)

FLIP IDLE WAVE
IDLE 0% 100% 0%
1.00

F1 SCORE 1.00

Feature explorer (full training set) @

accX RMS v accY RMs v accZ RMS

flip - correct
idle - correct
wave - correct
wave - incorrect |

e e 0 0

[ —
Y Ry N

On-device performance @
FLASH USAGE

INFERENCING TIME PEAK RAM USAGE
1 ms. 1.7K 19.3K

INFERENCING TIME: The time that a device takes to complete a prediction.
PEAK RAM USAGE and FLASH USAGE: Let's look at the Wio Terminal's Flash and RAM.
~

p
Powerful MCU - Microchip ATSAMD51P19
* ARM Cortex-M4F core running at 120MHz (Boost up to 200MHz)

¢ 4 MB External Flash, 192 KB RAM
/

.
Every embedded machine learning model has constraints. The model we get this time meets

these constraints.
After we have our model and are satisfied with its accuracy in training, we can test it on new

data in the Live classification tab.

7 Live classification



If the live classification gets poor performance, we need to analyze the reason and retrain

our model.

Model Optimization

Model optimization follows Practice 1.

Model Deployment

The next step is deployment on the device.

Step 1: After clicking on the Deployment tab, choose Arduino library and download it.

ARDUINO

Step 2: Now, the library can be installed to the Arduino IDE. Open the Arduino IDE, click
sketch -> Include Library -> Add .ZIP Library, and choose the file that you have just

downloaded.

@ Arduino File Edit Tools Help
‘00 @ Verify/Compile
Upload — . ]
Upload Using Programmer  {+3U Add .ZIP Library...
Export compiled Binary XHS

Arduino libraries

1 void setup() {

2 /7 put your setup code here Show Sketch Folder 8K Bridge
3 Include Library Esplora
;' } ' Add File... Ethernet

Step 3: Open Examples -> name of your project -> static buffer.

static_buffer §

l%include <Motien recegnition inferencing.h> I your project library name

Step 4: Copy the following Example Code to replace the original example code:



Also, since Wio Terminal has an LCD screen, we're going to display the name of the

detected class if this class confidence value is above the threshold.

#include"TFT_eSPI.h"
#include <project_48833_ inferencing.h>//replace with your project library name
#include"LIS3DHTR.h"

TFT_eSPI tft;

LIS3DHTR<TwoWire> 1lis;

#define CONVERT_G_TO_MS2 9.80665F
ei_impulse_result classification_t
currentClassification[EI_CLASSIFIER_LABEL_COUNT];
const char* maxConfidencelabel;

void runClassifier()
{
float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = { @ };
for (size_t ix = @; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += 3) {
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);
lis.getAcceleration(&buffer[ix], &buffer[ix + 1], &buffer[ix + 2]);
buffer[ix + ©] *= CONVERT_G_TO_MS2;
buffer[ix + 1] *= CONVERT_G_TO_MS2;
buffer[ix + 2] *= CONVERT_G_TO_MS2;
delayMicroseconds(next_tick - micros());
}
signal_t signal;
int err = numpy:: signal_from_buffer(buffer,
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
ei_impulse_result_t result = { 0 };

err = run_classifier(&signal, &result, false);
float maxValue = 0;
for (size t ix = ©; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_impulse result classification_t classification_t =
result.classification[ix];
ei printf(" %s: %.5f\n", classification_t.label, classification_t.value);
float value = classification_t.value;
if (value > maxValue) {
maxValue = value;
maxConfidencelLabel = classification_t.label;

}

currentClassification[ix] = classification_t;

void setup(){
tft.begin();
lis.begin(Wirel);
lis.setOutputDataRate (LIS3DHTR_DATARATE_100HZ);
lis.setFullScaleRange(LIS3DHTR_RANGE_4G);



tft.setRotation(3);
tft.setTextSize(4);

}

void loop(){

runClassifier();
tft.drawString((String)maxConfidencelLabel, 120, 120);

Step 5: Upload the code.

It takes about 5 mins to upload. If the upload is successful, the message "Done uploading."
will appear in the status bar.

Step 6: Wave the Wio Terminal and see the probability result printed out on the LCD screen.

Reference

Edge Impulse Public project:



https://studio.edgeimpulse.com/public/76504/latest

Practice 3.Keyword Spotting using built-in microphone.
(Hello Wio)

Project Overview

This model uses Wio Terminal built-in microphone to collect vocal wake words and ambient
sounds to train the model. This microphone also helps to wake up the device with the

wake-up word ("Hello Wio").

Material Preparation
Hardware requirements: Wio Terminal

Connection method:

About sensor
Sound is a vibration that propagates (or travels) as an acoustic wave, through a

a transmission medium such as a gas, liquid or solid.
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The source of sound pushes the surrounding medium molecules, they push the molecules
next to them and so on and so forth. When they reach other objects it also vibrates slightly —
we use that principle in the microphone. The microphone membrane gets pushed inward by
the medium molecules and then back to its original position.

diaphragm permanent magnet

sound waves electric signal

coil

That generates an alternating current in the circuit, where voltage is proportional to the
sound amplitude — the louder the sound, the more it pushes the membrane, thus generating
higher voltage. We then read this voltage with an analogue-to-digital converter and record at
equal intervals — the number of times we take measurement of sound in one second is called
a sampling rate, for example, 8000 Hz sampling rate is taking measurement 8000 times per
second. Sampling rate obviously matters a lot for the quality of the sound — if we sample too
slow we might miss important bits and pieces. The numbers used for recording sound
digitally also matter — the larger range of a number used, the more“nuances” we can
preserve from the original sound. That is called audio bit depth — you might have heard
terms like 8-bit sound and 16-bit sound. Well, it is exactly what it says on the tin — for 8-bit
sound unsigned 8-bit integers are used, which have ranged from 0 to 255. For 16-bit sound
signed 16-bit integers are used, so that’s -32768 to 32767. Alright, so in the end we have a

string of numbers, with larger numbers corresponding to loud parts of the sound and we can



visualize it like this - this is 1 second of gunshot sound recorded at 8000 Hz frequency in
8-bit depth (0-255).

Signal

250 +

200 1

&
o

Amplitude
(-]
L ]
= ]

0 1000 2000 3000 4000 5000 6000 7000 BOODO
Time {samples)

We can’t do much with this raw sound representation though — yes, we can cut and paste
the parts or make it quieter or louder, but for analyzing the sound, it is, well, too raw. Here is
where Fourier transform, Mel scale, spectrograms and cepstrum coefficients come in. For
the purpose of this project, we’ll define the Fourier transform as a mathematical transform
that allows us to decompose a signal into its individual frequencies and the frequency’s

amplitude.



Time Domain F:Ti Frequency Domain
s(t) S(w)

Machine Learning Lifecycle

Please Open: https://www.edgeimpulse.com/
Data Collection

Step1: Connect Wio Terminal with Edge Impulse

Step2: Know what we are going to do

We are going to train and deploy a simple neural network for keyword spotting with just a
built-in microphone. So we need to select the sensor we are going to use -- Built-in

microphone, then know what kind of data we are going to sample --keyword.
Select the sensor we are going to use -- a Built-in microphone

Record new data

Device @
Wio Terminal ~
Label Sample length (ms.)
5000
Sensor Frequency
Built-in microphone v 16000HzZ

Built-in accelerometer

v
Built-in microphone .
Built-in light sensor
External multichannel gas(Grove-multichannel gas v2)

External temperature&humidity&pressure sensor(Grove-BME280)

External pressure sensor(Grove-DP5310)

External distance sensor(Grove-TFmini)

External 6-axis accelerometer(Grove-BMIO88)
External ultrasonic sensor{Grove-ultrasonic sensor)
External CO2+Temp sensor(Grove-SCD30)



https://www.edgeimpulse.com/

This indicates that we want to record data for 5 seconds (Sample length 5000ms), use the

built-in microphone and frequency 16000 Hz.
Know the data we are going to sample.

We want to build a system that recognizes keywords, so our first job is to think of a great
one. It can be the name of your device, the name of your pet, etc. But keep in mind that
some keywords are harder to distinguish from others, and especially keywords with only one
syllable might lead to false- positives(like 'Hi'). This is the reason that Apple, Google and

Amazon all use at least three-syllable keywords ('Hey Siri', 'OK, Google', 'Alexa’).

So we choose “Hello Wio”, and say hello to our Wio Terminal.

Hello Wio

In addition to our keyword, we'll also need audio that is not our keyword. Like background

noise, and humans saying other words.

Background



Acquire background sound

Unknown

other words

This is required because a machine learning model has no idea about right and wrong, but

only learns from the data we feed into it.

So we should tell the machine learning model; when you hear this, this is background, when

you hear that, that is unknown words. and only when you hear "hello Wio "that is Hello Wio.

Step3: Sample

Record new data

Device ®

Wio Terminal v

Label Sample length (ms.)

Hello wio

Sensor Frequency

Built-in microphone - 16000H2 -

or
uitichannel gas(Grove-multichannel gas v2)

280)

&P
rove-DPS310)
sor sensor)




Enter the label, click "Start Sampling", and start saying our keyword over and over again
(with some pause in between). Because the recording needs to use SPI Flash which will

operate erasing, the time it takes usually longer than we set.
Afterwards, we have a file like this, clearly showing our keywords, separated by some

noise. So we can see that | have three. Hello Wio.

RAW DATA

hello_wio.2poarog4

This data is not suitable for Machine Learning yet though. We will need to cut out the parts
where we say our keyword. This is important because we only want the actual keyword to be

labeled as such, and not accidentally label noise, or incomplete sentences.

Tap the little three dots here. : and select the “Split sample”.

Collected data Y o 2 o
SAMPLE NAME LABEL ADDED LENGTH
hello_wio.2po... hello_wio Today, 20:....  5s /

we want to look at a certain window length a second here.



[# Split sample 'hello_wio.2poarog4'

‘_ 4+ Add Segment ‘ / Set segment length (ms.): el

Remove segment

= e

That is what we are going to look at. And we need to make sure that the actual word is in

there, not noise.

| & zoom ] | +Add Segment | Set segment length (ms.):  [{e0]

Remove segment

- B

If it has a window like that, there's actually only noise in there, the model gets confused.

which is very bad for the accuracy of the model.
In addition, we can either collect this ourselves or make our life a bit easier by
using a dataset that we get online.

If we search online, we can find some data specially made for keyword spotting. And edge
impulse also provides such a dataset.This is a prebuilt dataset for a keyword spotting system

based on a subset of data in the Goodle Speech Commands Dataset, with added noise



https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html

from the Microsoft Scalable Noisy Speech Dataset. It contains 25 minutes of data per

class, split up in 1 second windows, sampled at 16,000Hz.

Make sure to capture wide variations of the keyword: leverage our family and our colleagues

to help us collect the data, make sure we cover high and low pitches and slow and fast

speakers.

Make sure we have a well-balanced dataset.

Training data Test data | Export data

DATA COLLECTED

9m 7s

Impulse Design

With the training set in place, we can design an impulse.

Time series e Audio o Classification (Keras)
data (MFCC) o

Input axes Name
Name

NN Classifier

Input features

audio MECC
Window size ®
—

1000 ms. audio

Input axes (1)

(v) MFcC

Window increase (3

<

Output features

500 ms. 3 (background, hello_wio,

unknown)
Frequency (Hz) (©)

16000 (&

Zero-pad data ®
v

Output °
features

3 (background,
hello_wio, unknown)

Save Impulse



https://github.com/microsoft/MS-SNSD

And the pipeline consists of the default settings for time series, data window are
correct—1000ms. And the window increase here is not going to be used, because all of our

data is already a second long.

Then we add a preprocessing block and we use signal processing to clean up the data
before feeding it to the neural network. We have lots of processing blocks for a wide variety
of typical senses. We want one specifically for audio. We have the normal spectrogram
which is really great for non-voice audio. And then we have an MFE block as well which you
can also use for non-voice audio. And here we are dealing with the human voice. So, we'll

use the "MFCC" signal processing block.

Audio (MFCC)

Extracts features from audio signals using Mel Frequency Cepstral Edgelmpulse Inc. ‘ Add |
Coefficients, great for human voice.

Feature Extraction--MFCC

MFCC stands for Mel Frequency Cepstral Coefficients. This sounds scary, but it's

basically just a way of turning raw audio—which contains a large amount of redundant
information—into a simplified form. the "MFCC" block is great for dealing with human

speech.



Parameters

Mel Frequency Cepstral Coefficients

Number of coefficients

13
Frame length 0.02
Frame stride 0.02
Filter number 32
FFT length 256
Normalization window size 101
Low frequency 300
High frequency Click to set
Pre-emphasis
Coefficient 0.98
Shift

Save parameters

So with all these default parameters set by Edge Impulse for such a project, we won't

change them this time, let's go to generate features.
Feature explorer (547 samples)

X Axis Y Axis Z Axis
Visualization layer 1 Visualization layer 2 Visualization layer 3

® background
&  hello_wio

® unknown

.
(ﬂ’@, £ Jake| uoneZIENS N
<

pa

- -
o =

v
P

Visualization layer 1

This is the feature explorer.



So what we see here is all the data in my data sets are shown in three dimensions after the

feature extraction step.

What | am interested in is whether my “Hello Wio”, and my unknown words are nicely

separated.

And we see that as a nice separation between the orange clusters, which all contain “Hello

Wio” samples and the green cluster contains “unknown” words.

Feature explorer (547 samples) @
o Axis ¥ Axis Z Axls
Visualization Laysr 1 v Visualization layer 2 w Wisualization layer 3 w

This is a great way to check whether our dataset contains wrong items and to validate

whether our dataset is suitable for ML (it should separate nicely).

Model Training--Network:CNN

With all data processed it's time to start training a neural network



Audio training options

Data augmentation &
Add noise @ None Low High
Mask time bands ® None Low High
Mask frequency bands @ None Low High

Warp time axis @

enable 'Data augmentation', a super-powerful feature where during training we randomly
manipulate data in our training data set. So we can add artificial noise to make it more

resilient to noisy environments

This is a very quick way to make our dataset work better in real life (with unpredictable
sounds coming in) and prevents our neural network from overfitting (as the data samples are

changed every training cycle).

We use the default hyperparemeters and neural network provided by Edge Impulse.

Number of training cycles @ 100

Learning rate & 0.005

Meural network architecture

Architecture pr\ese"fs@ 10 Convolutional (Default) 20 Convolutional

Input layer (650 features)

Reshape layer (13 columns)

1D conv / pool layer (8 neurons, 3 kernel size, 1 layer)

Dropout (rate 0.25)

1D conv / pool layer (16 neurons, 3 kernel size, 1 layer)

Dropout (rate 025)

RAatten layer

Add an extra layer




Model Optimization

Model Deployment

The next step is deployment on the device.

Step 1: After clicking on the Deployment tab, choose Arduino library and download it.

ARDUINO

Step 2: Now, the library can be installed to the Arduino IDE. Open the Arduino IDE, click
sketch -> Include Library -> Add .ZIP Library, and choose the file that you have just

downloaded.

@ Arduino File Edit Tools Help
‘00 @ Verify/Compile
Upload
Upload Using Programmer
Export compiled Binary X #¥S

Test.ino
1 void setup() {

Arduino libraries

2| 7/ put your setip code Helll Show Sketch Folder Bridge
3 Include Library Esplora
4  Add File...

: Ethernet

Step 3: Open Examples -> name of your project -> static buffer.

static_buffer

23 Includes —-————————————————— - ————— -
24 |#include <Reyword spotting Hello Wioc inferencing.h> |
23 Your project library name

Step 4: Copy the following Example Code to replace the original example code:

For Wio Terminal we will rely on DMA or Direct Memory Access controller to obtain

samples from ADC (Analog to Digital Converter) and save them to the inference buffer

without the involvement of MCU.

That will allow us to collect the sound samples and perform inference at the same time.




#include"TFT_eSPI.h"
#include <project 67469 _inferencing.h>
enum {ADC_BUF_LEN = 1600};
typedef struct {
uintlée_t btctrl;
uintlé_t btcnt;
uint32_t srcaddr;
uint32_t dstaddr;
uint32_t descaddr;
}dmacdescriptor;
typedef struct {
signed short *buffers[2];
unsigned char buf_select;
unsigned char buf_ready;
unsigned int buf_count;
unsigned int n_samples;
}inference_t;
volatile uint8_t recording = 9;
uintlé6_t adc_buf O[ADC_BUF_LEN];
uintl6_t adc_buf 1[ADC_BUF_LEN];
volatile dmacdescriptor wrb[DMAC_CH_NUM] _ attribute__ ((aligned (16)));
dmacdescriptor descriptor_section[DMAC_CH_NUM] _ attribute__ ((aligned (16)));
dmacdescriptor descriptor __ attribute__ ((aligned (16)));
static inference_t inference;

class FilterBuHpil{

public:
FilterBuHpl(){
v[e] = 0.9;
}
private:
float v[2];
public:
float step(float x)
{
v[e] = v[1];
v[1] = (9.621952458291035404e-1f * x) + (0.92439049165820696974f * v[0]);

return (v[1] - v[@0]);
¥

35

FilterBuHpl filter;

static void audio_rec_callback(uintl16_t *buf, uint32_t buf_len) {
if (recording) {
for (uint32_t i = 0; i < buf_len; i++) {
inference.buffers[inference.buf_select][inference.buf count++] =
filter.step(((intl6_t)buf[i] - 1024) * 16);
if (inference.buf _count >= inference.n_samples) {
inference.buf_select "= 1;
inference.buf_count
inference.buf_ready

)

1}
R o |

J



void DMAC_1 Handler() {
static uint8_t count = 9;
if (DMAC->Channel[1].CHINTFLAG.bit.SUSP) {
DMAC->Channel[1].CHCTRLB.reg = DMAC_CHCTRLB_CMD_ RESUME;
DMAC->Channel[1].CHINTFLAG.bit.SUSP = 1;
if (count) {
audio_rec_callback(adc_buf_©, ADC_BUF_LEN);
}else {
audio_rec_callback(adc_buf_1, ADC_BUF_LEN);
}

count = (count + 1) % 2;

void config dma_adc() {
DMAC->BASEADDR.reg = (uint32_t)descriptor_section;
DMAC->WRBADDR.reg = (uint32_t)wrb;
DMAC->CTRL.reg = DMAC_CTRL_DMAENABLE | DMAC_CTRL_LVLEN(@xf);
DMAC->Channel[1].CHCTRLA.reg = DMAC_CHCTRLA_TRIGSRC(TC5_DMAC_ID OVF) |
DMAC_CHCTRLA_TRIGACT_BURST;

descriptor.descaddr = (uint32_t)&descriptor_section[1];
descriptor.srcaddr = (uint32_t)&ADC1->RESULT.reg;
descriptor.dstaddr = (uint32_t)adc_buf © + sizeof(uintlé6_t) * ADC_BUF_LEN;
descriptor.btcnt = ADC_BUF_LEN;
descriptor.btctrl = DMAC_BTCTRL_BEATSIZE_HWORD |
DMAC_BTCTRL_DSTINC |
DMAC_BTCTRL_VALID |
DMAC_BTCTRL_BLOCKACT_SUSPEND;
memcpy (&descriptor_section[@], &descriptor, sizeof(descriptor));

descriptor.descaddr = (uint32_t)&descriptor_section[0];
descriptor.srcaddr (uint32_t)&ADC1->RESULT.reg;
descriptor.dstaddr (uint32_t)adc_buf_1 + sizeof(uintl6_t) * ADC_BUF_LEN;
descriptor.btcnt = ADC_BUF_LEN;
descriptor.btctrl = DMAC_BTCTRL_BEATSIZE_HWORD |
DMAC_BTCTRL_DSTINC |
DMAC_BTCTRL_VALID |
DMAC_BTCTRL_BLOCKACT_SUSPEND;
memcpy (&descriptor_section[1], &descriptor, sizeof(descriptor));

NVIC SetPriority(DMAC_1 IRQn, 0);
NVIC_EnableIRQ(DMAC_1 IRQn);

DMAC->Channel[1].CHINTENSET.reg = DMAC_CHINTENSET_SUSP;



static bool microphone_inference_record(void) {

static int microphone_audio_signal get_data(size_t offset,
size_t length,
float *out_ptr) {

numpy: :intl6_to_float(&inference.buffers[inference.buf_select

ADC1->INPUTCTRL.bit.MUXPOS = ADC_INPUTCTRL_MUXPOS_AIN12_Val;

while (ADC1->SYNCBUSY.bit.INPUTCTRL);

ADC1->SAMPCTRL.bit.SAMPLEN = 0x00;

while (ADC1->SYNCBUSY.bit.SAMPCTRL);

ADC1->CTRLA.reg = ADC_CTRLA_PRESCALER_DIV128;

ADC1->CTRLB.reg = ADC_CTRLB_RESSEL_12BIT |
ADC_CTRLB_FREERUN;

while (ADC1->SYNCBUSY.bit.CTRLB);

ADC1->CTRLA.bit.ENABLE = 1;

while (ADC1->SYNCBUSY.bit.ENABLE);

ADC1->SWTRIG.bit.START = 1;

while (ADC1->SYNCBUSY.bit.SWTRIG);

DMAC->Channel[1].CHCTRLA.bit.ENABLE = 1;

GCLK->PCHCTRL[TC5_GCLK_ID].reg = GCLK_PCHCTRL_CHEN |
GCLK_PCHCTRL_GEN_GCLK1;

TC5->COUNT16.WAVE.reg = TC_WAVE_WAVEGEN_MFRQ;
TC5->COUNT16.CC[0].reg = 3000 - 1;

while (TC5->COUNT16.SYNCBUSY.bit.CCO);
TC5->COUNT16.CTRLA.bit.ENABLE = 1;

while (TC5->COUNT16.SYNCBUSY.bit.ENABLE);

bool ret = true;

while (inference.buf _ready == 0) {
delay(1);

}

inference.buf_ready = 0;

return ret;

out_ptr, length);

}

return 0;

TFT_eSPI tft;
ei_impulse_result_classification_t

currentClassification[EI_CLASSIFIER_LABEL_COUNT];

const char* maxConfidencelabel;

void runClassifier()

{

bool m = microphone_inference_record();

if (Im) {

return;

A 1][offset],



signal_t signal;
signal.total_length = EI_CLASSIFIER_SLICE_SIZE;
signal.get_data = &microphone_audio_signal get_data;
ei_impulse_result_t result = { 0 };
EI_IMPULSE_ERROR r = run_classifier_continuous(&signal, &result, false);
if (r !'= EI_IMPULSE_OK) {
return;

float maxValue 0;
for (size t ix = @; ix < EI_CLASSIFIER LABEL_COUNT; ix++) {
ei_impulse_result_classification_t classification_t =
result.classification[ix];
ei printf(" %s: %.5f\n", classification_t.label, classification_t.value);
float value = classification_t.value;
if (value > maxValue) {
maxValue = value;
maxConfidencelabel = classification_t.label;

}

currentClassification[ix] = classification_t;

void setup(){
tft.begin();
run_classifier_init();
inference.buffers[0] = (int16_t *)malloc(EI_CLASSIFIER SLICE_SIZE *
sizeof(intl6_t));
if (inference.buffers[@] == NULL) {
return;
}
inference.buffers[1] = (int16_t *)malloc(EI_CLASSIFIER_SLICE_SIZE *
sizeof(intl6_t));
if (inference.buffers[1] == NULL) {
free(inference.buffers[0]);
return;

inference.buf_select = 9;
inference.buf _count = 0;
inference.n_samples = EI_CLASSIFIER_SLICE_SIZE;
inference.buf_ready = 0;

config dma_adc();
recording = 1;

tft.setRotation(3);
tft.setTextSize(4);



void loop(){
runClassifier();

if (maxConfidencelLabel == "hello wio") {
tft.drawString((String)"Hello Wio", 50, 110);
delay(3000);

} else {
tft.fillScreen(0x0);

}

¥
Step 5: Upload the code.

It takes about 5 mins to upload. If the upload is successful, the message "Done
uploading." will appear in the status bar.

Step 6: Say “Hello Wioto the Wio Terminal to see whether it has been woken up.

P O R ‘

Reference

Edge Impulse Public project:



https://studio.edgeimpulse.com/public/77128/latest

Practice 4.People counting using Ultrasonic sensor

Project Overview
In this project, we will create a people counting system by using Wio Terminal, an ordinary

Ultrasonic ranger and a special Deep Learning sauce to top it off and actually make it work.

Material Preparation

Hardware requirements: Wio Terminal
Connection method:

Attach Wio terminal and Ultrasonic sensor with screws to wooden or 3D printed frame,

example below:

To put the frame on the wall, 3M velcro strips were used.

Additional options include using foam tape, screws or nails.

About sensor

First, let's understand the data we can get from the Ultrasonic sensor and how we can utilize

it for determining the direction of objects.



This Grove - Ultrasonic ranger is a non-contact distance measurement module that works at
40KHz. When we provide a pulse trigger signal with more than 10uS through the signal pin,
the Grove_Ultrasonic_Ranger will issue 8 cycles of 40kHz cycle level and detect the echo.
The pulse width of the echo signal is proportional to the measured distance. Here is the

formula: Distance =echo signal high time * Sound speed (340M/S)/2.

Original Signal N

N

~—

s ——
-
- Ll T,

Object

-
-
-

Source

Echo Signal

N

M

Distance

Now, use this Grove - Ultrasonic ranger. We can immediately see that for walking in, we get

relatively high values(corresponding to distance from the object) first, which then decrease.

And for walking out, we get completely opposite signal.



Theoretically, we could write an algorithm ourselves by hand, that can determine the

direction. Unfortunately, real-life situations are complicated — we have people, that walk
fast(shorter curve length) and slow (longer curve length), we have thinner people and people
who are... not so thin and so on. So our hand-written algorithm needs to take all of these into
account, which will inevitably make it complicated and convoluted. We have a task involving
inference signal processing and lots of noisy data with significant variations... And the
solution is — Deep Learning.

Warning

Do not hot-plug Grove-Ultrasonic-Ranger, otherwise, it will damage the sensor. The

the measured area must be no less than 0.5 square meters and smooth.

Machine Learning Lifecycle

Please Open: https://www.edgeimpulse.com/

Data Collection
Step1: Connect Wio Terminal with Edge Impulse

Step2: Know what we are going to do


https://www.edgeimpulse.com/

We will train and deploy a simple neural network that can distinguish between people
entering or exiting a room using only ultrasonic rangers. So we need to select the sensor we
are going to use — Grove-Ultrasonic-Ranger, then know what kind of data we are going to

sample --people in and people out.

Select the sensor we are going to use -- Grove-Ultrasonic-Ranger.

Record new data

Device @
33:68:FF:19:11:3C v
Label Sample length (ms.)
5000
Sensor Frequency
External ultrasonic sensor(Grove-ultrasonic sensor) v 21Hz v

Built-in accelerometer
Built-in microphone i
Built-in light sensor
External multichannel gas(Grove-multichannel gas v2)

External temperature&humidity&pressure sensor(Grove-BME280)

External pressure sensor(Grove-DPS310)

External distance sensor(Grove-TFmini)

External 6-axis accelerometer(Grove-BMI088)
External ultrasonic sensor(Grove-ultrasonic sensor)
External CO2+Temp sensor(Grove-SCD30)

This indicates that we want to record data for 5 seconds (Sample length 5000ms), use a

built-in microphone and frequency 21Hz.

Know the data we are going to sample -- people in and people out



Walking in
: -

None(walking near the device, not getting closer or further away from it)



Step3: Sample

Record new data

Device @
33:68:FF:19:11:3C v
Label Sample length (ms.)
in 5000
Sensor Frequency
External ultrasonic sensor(Grove-ultrasonic sensor) v 21Hz v

Start sampling

Enter the label, click "Start Sampling",For this lesson, we recorded 1 minute 30 seconds of
data for every class, each time recording 5000 ms samples and then cropping them to get
1500 ms samples — remember that variety is very important in the dataset, so make sure you

have samples where you (or other people) walk fast, slow, run, etc.

Walking in



RAW DATA

in.json.1upbg95l.s1

Walking out

RAW DATA

out.json.1upgqhcd.s1

None

RAW DATA

none.json.1up6t8I3




For none category apart from samples that have nobody in front of the device, it is a good
idea to include samples that have a person just standing close to the device and walking

beside it, to avoid any movement being falsely classified as in or out.

Impulse Design

When we are done with data collection, create your impulse — set window length to 1500 ms

and windows size increase to 500 ms.

CREATE IMPULSE ime0ME_COUNTER RAW . Demitry

v Animpuise takes raw data, sses sipnal processing to extract features, and then wies a learming block 1o classify new dala
Output °
features

Time series Raw Data Neural
data Network

(Keras)
Axes Mame

3 (i, i, Qi)

Name

.-
Winstow sire @
nput anes
Save impulse
) input features

Fyw daly

o Faw data

Window increass

Outpart features




Feature Extraction--Raw Data

Feature explorer (243 samples) ®@
X Axis Y Axis Z Axis
Visualization |~ Visualization |+~ Visualization [~

® none
® out

18 &

10

Model Training--Network: CNN

The best results were achieved by tweaking network architecture a bit to

obtain 92% accuracy, for that, you will need to switch to “expert” mode and change

MaxPool1D strides to 1 and pool size to 4.



Neural network architecture ACCURACY LOSS
92.0% 0.25

1 jimport tensorflow as tf -~

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense,
InputLayer, Dropout, ConviD, Conv2D, Flatten,
Reshape, MaxPoolinglD, MaxPooling2D,
Batchiormalization N NONS ouT

4 from tensorflow.keras.optimizers import Adam = m 15.4% %

5 IN .48 D%

6 @ model architecture NONE 4.2% m O%

7  model - Sequential()

8 model.add(Reshape((int(input_length / 1), 1), out 7.7% o m

input_shape-(input_length, )))

9 model.add(ConviD(16, kernel size-4, activation
‘relu’, padding-'same’))

18  model.add(MaxPoolinglD(pool_size-4, strides-1,
padding- ‘' same')) Feature explorer @

11 model.add(Dropout(®.1))

12 model.add(ConviD(32, kernel_size-4, activation
‘relu’, padding-'same’))

Confusion matrix

w N

F1 SCORE 08% 0.54 0.96

® in-correct
13  model.add(MaxPoolinglD(pool _size-4, strides-1,
padding-"same’)) ® none - correct
14 model.add(Dropout(0.1)) ®  out - correct
15 model.add(Flatten()) ® in-incorrect
. add » “sof 4o
16 -ode'lm:el FT:::SF;?““ activation- " softmax ® none- incorrect
17 £ ® out-incorrect
18 & this controls the learning rate 9
19 opt - Adam(lr-0.8005, beta_1-9.9, beta_2-9.999) ™
20 & this controls the batch size, or you can r M
man ve tf.data.Dataset objects ¥
yourself 1 ~15
21  BATCH_SIZE EF] o =20
22 train_dataset, validation_dataset - set_batch_size . \0 A0 ~25 =
(BATCH_SIZE, train_dataset, validation_dataset ~ TSl o - $ =30

How good is 92% accuracy and what can be done to improve it?

92% is fairly good as proof of concept or prototype, but horrible as a production model. For
production, the mileage may vary — if your application is critical and somehow used in
automated control and decision making, you don’t really want to have anything below 98 —
99 per cent and even that might be low, think about something like a face recognition system

for payment or authentication. Are there ways to improve the accuracy of this system?

The ultrasonic sensor is a cheap and ubiquitous sensor, but it is relatively slow and not very

precise. We can get better data by using Grove TF Mini LiDAR Module.



» Get more data and possibly place the sensor lower, at normal human waist level to make

sure it can detect shorter than normal height people and children.

» Two are better than one — having two sensors taking measurements at slightly different
places will not add too much data (we only have 31 data points in each sample) but might
increase the accuracy. To explore more interesting ideas, a built-in light sensor can be used

if Wio Terminal is appropriately located.

Once the model is trained we can perform live classification with data from the device — here
we found that a window size increase of 500 ms actually doesn’t work that well and
produces more false positives, so at the next step when deploying to the device, it is better
to increase the value to 750 ms.

Model Optimization

Model Deployment

The next step is deployment on the device.

Step 1: After clicking on the Deployment tab, choose Arduino library and download it.

ARDUINO

Step 2: Now, the library can be installed to the Arduino IDE. Open the Arduino IDE, click

sketch -> Include Library -> Add .ZIP Library, and choose the file that you have just



downloaded.

@ Arduino File Edit Tools Help
00 ® Verify/Compile
Upload ;
Upload Using Programmer J Add .Z|P Library...
Export compiled Binary N#ES

Test.ino
1 void setup() {

Arduino libraries

Show Sketch Folder F$K

2 // put your setup code here, Bridge
3 Include Library Esplora
411 Add File...

. Ethernet

Step 3: Open Examples -> name of your project -> static buffer.
Open

static_buffer

T
b
!
(|

Winclude <people_counter_raw_inferencing.h}‘

| ST ST S T |

wn

Your project library name

Step 4: Copy the following Example Code to replace the original example code:
This time we will be using continuous inference examples to make sure we are not missing

any important data.

#include <people_counter_inferencing.h>
#include <Seeed_Arduino_FreeRTOS.h>
#include "Ultrasonic.h"

#include "TFT_eSPI.h"

#include <1lvgl.h>

#define ERROR_LED_LIGHTUP_STATE HIGH
#define LVGL_TICK_PERIOD 10

/* Private variables ------------mmmmmm e */
static bool debug nn = false; // Set this to true to see e.g. features generated
from the raw signal

static uint32_t run_inference_every ms = 500;

static float buffer[EI_CLASSIFIER DSP_INPUT_FRAME_SIZE] = {0};

static float inference_buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE];

float distance;

uint8_t axis_num = 1;
intl6_t peopleCount =
uintl6_t peopleln = 0;
uintl6_t peopleOut = 9;

9;



1v_obj_t *LogOutput;

lv_obj_t *peopleInLabel;
lv_obj_t *peopleOutLabel;
lv_obj_t *peopleNumLabel;

const char *prev_prediction = "none";

TaskHandle_t Handle_aTask;
TaskHandle_t Handle_ bTask;
TaskHandle_t Handle_ cTask;

Ultrasonic ultrasonic(9);

TFT_eSPI tft;

static 1lv_disp_buf_t disp_buf;

static 1lv_color_t buf[LV_HOR_RES_MAX * 10];

/**
* @brief Arduino setup function
*/

void setup()

{
pinMode (WIO_KEY_A, INPUT_PULLUP);
pinMode (WIO_KEY_B, INPUT_PULLUP);
pinMode(WIO KEY_C, INPUT PULLUP);

1v_init();

tft.begin();

tft.setRotation(3);

// put your setup code here, to run once:
Serial.begin(115200);

lv_disp_buf_init(&disp_buf, buf, NULL, LV_HOR_RES MAX * 10);
lv_disp_drv_t disp_drv;

lv_disp_drv_init(&disp_drv);

disp_drv.hor_res = 320;

disp_drv.ver_res = 240;

disp_drv.flush_cb = my_disp flush;

disp_drv.buffer = &disp_buf;
lv_disp_drv_register(&disp_drv);

1lv_buttons();
[11117177777777177177

// Enter configuration mode

if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != axis_num) {
ei_printf("ERR: EI_CLASSIFIER_RAW_SAMPLES PER_FRAME should be equal to
(%d) (the (%d) sensor axes)\n", axis num, axis_num);
return;



vSetErrorLed(LED BUILTIN, ERROR_LED_ LIGHTUP_STATE);

// Create the threads that will be managed by the rtos

// Sets the stack size and priority of each task

// Also initializes a handler pointer to each task, which are important to
communicate with and retrieve info from tasks

xTaskCreate(lv_tick_task, "LVGL Tick", 128, NULL, tskIDLE_PRIORITY + 1,
&Handle_aTask);

xTaskCreate(run_inference_background, "Inference", 512, NULL,
tskIDLE_PRIORITY + 1, &Handle bTask);

xTaskCreate(read data, "Data collection", 256, NULL, tskIDLE PRIORITY + 2,
&Handle_cTask);

// Start the RTOS, this function will never return and will schedule the
tasks.
vTaskStartScheduler();

/**

* @brief Printf function uses vsnprintf and output using Arduino Serial

*

* @param[in] format Variable argument list

*/

void update_screen()

{
peopleCount = peopleIn - peopleOut;
lv_label set_text fmt(peoplelnLabel, "%d", peopleln);
lv_label set text fmt(peopleOutLabel, "%d", peopleOut);
lv_label set text fmt(peopleNumLabel, "%d", peopleCount);
1lv_task_handler();

static void 1lv_tick_task(void* pvParameters) {
while(1){
1v_tick_inc(LVGL_TICK_PERIOD);
delay(LVGL_TICK_PERIOD);

}
}
static void DisplayPrintf(const char* format, ...)
{

va_list arg;

va_start(arg, format);

String str{StringVFormat(format, arg)};
va_end(arg);

Log("%s\n", str.c_str());
lv_label_set_text(LogOutput, str.c_str());
1lv_task_handler();



void my disp flush(lv_disp_drv_t *disp, const lv_area_t *area, lv_color_t
*color_p)

{
uintlée_t c;

tft.startWrite(); /* Start new TFT transaction */
tft.setAddriWindow(area->x1, area->yl, (area->x2 - area->x1 + 1), (area->y2 -
area->yl + 1)); /* set the working window */
for (int y = area->yl; y <= area->y2; y++) {
for (int x = area->x1; X <= area->x2; x++) {
c = color_p->full;
tft.writeColor(c, 1);
color_p++;
}

}
tft.endWrite(); /* terminate TFT transaction */

lv_disp_flush_ready(disp); /* tell 1lvgl that flushing is done */
}

void 1lv_buttons(void)

{

lv_obj_t *peopleInDisplay = lv_btn_create(lv_scr_act(), NULL); /*Add a
button the current screen*/

lv_obj_set_pos(peopleInDisplay, 20, 60); /*Set
its position*/

lv_obj_set_size(peopleInDisplay, 120, 50); /*Set
its size*/

peopleInLabel = 1lv_label create(peopleInDisplay, NULL); /*Add a
label to the button*/

lv_label set_text(peopleInLabel, "0"); /*Set the labels
text*/

lv_obj_t *peopleOutDisplay = 1lv_btn_create(lv_scr_act(), NULL); /*Add a
button the current screen*/

lv_obj_set_pos(peopleOutDisplay, 180, 60); /*Set
its position*/

lv_obj_set_size(peopleOutDisplay, 120, 50); /*Set
its size*/

peopleOutLabel = 1lv_label create(peopleOutDisplay, NULL); /*Add a
label to the button*/

lv_label set_text(peopleOutlLabel, "0"); /*Set the labels
text*/

lv_obj_t *peopleNumDisplay = 1lv_btn_create(lv_scr_act(), NULL); /*Add a
button the current screen*/

lv_obj_set_pos(peopleNumDisplay, 90, 160); /*Set
its position*/

lv_obj_set_size(peopleNumDisplay, 140, 70); /*Set
its size*/

peopleNumLabel = 1lv_label create(peopleNumDisplay, NULL); /*Add a

label to the button*/
lv_label set_text(peopleNumLabel, "0"); /*Set the labels



text*/
LogOutput = 1lv_label create(lv_scr_act(), NULL);

lv_label_set_long_mode(LogOutput, LV_LABEL_LONG_BREAK); /*Break the long
lines*/

lv_label set_recolor(LogOutput, true); /*Enable
re-coloring by commands in the text*/

lv_label set_align(LogOutput, LV_LABEL_ALIGN_LEFT); /*Center aligned
lines*/

lv_obj_set_width(LogOutput, 320);
1v_obj_align(LogOutput, NULL, LV_ALIGN_IN TOP_LEFT, 20, 10);

#define DLM "\r\n"

static String StringVFormat(const char* format, va_list arg)

{
const int len = vsnprintf(nullptr, @, format, arg);
char str[len + 1];
vsnprintf(str, sizeof(str), format, arg);
return String{str};

}

static void Abort(const char* format, ...)

{
va_list arg;
va_start(arg, format);
String str{ StringVFormat(format, arg) };
va_end(arg);
Serial.printf("ABORT: %s" DLM, str.c_str());
while (true) {}

}

static void Log(const char* format, ...)

{
va_list arg;
va_start(arg, format);
String str{StringVFormat(format, arg)};
va_end(arg);
Serial.print(str);

}

/**

* @brief Run inferencing in the background.
*/
static void run_inference_background(void* pvParameters)
{

// wait until we have a full buffer

delay((EI_CLASSIFIER_INTERVAL_MS * EI_CLASSIFIER_RAW_SAMPLE_COUNT) + 100);

// This is a structure that smoothens the output result

// With the default settings 70% of readings should be the same before
classifying.



ei_classifier_smooth_t smooth;
ei classifier_smooth_init(&smooth, 3 /* no. of readings */, 2 /* min.
readings the same */, 0.6 /* min. confidence */, 0.3 /* max anomaly */);

while (1) {
// copy the buffer
memcpy (inference_buffer, buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE *
sizeof(float));
// Turn the raw buffer in a signal which we can the classify
signal_t signal;
int err = numpy::signal_from_buffer(inference_buffer,
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
if (err 1= 0) {
Log("Failed to create signal from buffer (%d)\n", err);
return;

// Run the classifier
ei_impulse_result_t result = {0};
err = run_classifier(&signal, &result, debug nn);
if (err != EI_IMPULSE OK) {
Log("ERR: Failed to run classifier (%d)\n", err);
return;
}
// print the predictions
Log("Predictions ");
Log("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
result.timing.dsp, result.timing.classification,
result.timing.anomaly);
Log(": ");
// ei_classifier_smooth_update yields the predicted label
const char *prediction = ei_classifier_smooth_update(&smooth, &result);

Log("%s ", prediction);

if (prediction != prev_prediction)

{

if (prediction == "out") {peopleOut++; DisplayPrintf("#ffeoff Person
left#");}

if (prediction == "in") {peoplelIn++; DisplayPrintf("#0000ff Person

entered#");}
prev_prediction = prediction;
update_screen();

}
// print the cumulative results
Log(" [ ");

for (size_t ix = ©@; ix < smooth.count_size; ix++) {
Log("%u", smooth.count[ix]);

if (ix !'= smooth.count_size + 1) {
Log(", ");

}

else {

Log(" ");



}
Log(ll]\nll);
delay(run_inference_every_ms);

}

ei classifier_smooth_free(&smooth);

/**
* @brief Get data and run inferencing
*

* @param[in] debug Get debug info if true

*/

static void read_data(void* pvParameters)

{

while (1) {
// Determine the next tick (and then sleep later)
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL _MS * 1000);
// roll the buffer -axis_num points so we can overwrite the last one
numpy: :roll(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, -axis_num);
distance = ultrasonic.MeasureInCentimeters();
if (distance > 200.0) { distance = -1;}
buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 1] = distance;
// and wait for next tick
uinte4_t time_to_wait = next_tick - micros();
delay((int)floor((float)time_to _wait / 1000.0f));
delayMicroseconds(time_to_wait % 1000);
¥

}

void loop()

{

//nothing, all the work is done in two threads
}

If you remember, in the first Practice, for the inference, we would collect all the data points in
the sample, perform the inference and then go back to sampling — that means that when
feeding the data to the neural network we would pause the data collection and lose some of

the data.



Run Impulse

(Sample Audio)l—

¥

Run Inference

Use Classified Output

<Keep Running?}—

®

That is not optimal and we can use either DMA (Direct Memory Access), threading or

multiprocessing to fix this issue.

RAM

RD WR Addr pata

RS  DMA
——sR Controller DMA Request

BG
Interrupt

Fig: Showing DMA Mode of Data Transfer

Wio Terminal MCU (Cortex M4F core) only has one core, so multiprocessing is not an option

— so in this case, we will use FreeRTOS and threads. What is going to happen is that during
the inference process, FreeRTOS will pause inference for a brief moment, collect the data

sample and then go back to inference



All available tasks appear to be executing ...

Task 1 Executing

Task 2 Executing

Task 3 Executing

[ 11 12 ime tn >

... but only one task is ever executing at any time.

Task 1 Executing e

Task 2 Executing —

[ 11 12 Time tn >

This way the actual inference will take a little longer, but the difference is negligible for this

Task 3 Executing

particular use case. We perform inference every 500 ms, so every 500 ms slice of the time
window will be performed inference on for 3 times. Then we take the result that has the
highest confidence across 3 inferences — for example, we have the highest confidence for
“out” label 2 times and for “none” label one time, thus the result should be classified as “out”.
To simplify the testing we will add the lines that turn on Wio Terminal screen when a person

is entering the room and turn it off when a person exits.

Step 5: Upload the code.

It takes about 5 mins to upload. If the upload is successful, the message "Done uploading.”
will appear in the status bar.

Step 6:



Make simple GUI with L

Person entered

Reference

Edge Impulse Public project

https://studio.edgeimpulse.com/public/18808/latest

Practice 5. Anomaly detection using Grove BME280
Project Overview

In this project, we will use data from BME280, perform anomaly detection on-device.

Anomalies. Or specifically anomaly detection for predictive maintenance.



Some workshops will have requirements for specific range of temperature, humidity and air
pressure because the abnormal environments will have adverse effects on their products.
Similarly, greenhouse planting, the breeding hatchery has requirements for these three

indices, a good environment helps its planting and hatching.

In these situations, we really just want our model to be able to interpret all the data as
‘normal” and “abnormal”. It doesn’t matter what are the exact characteristics of “abnormal” —
they can be wildly different, the important thing is, if the “abnormal” class is detected, some
measures need to be implemented. What | described now is the premise behind using
Machine Learning for predictive maintenance. We monitor the state of the device or a place,
be it an air conditioner, water pump or other machinery with sensors and based on the profile
of known “normal” operation, try to detect when something goes SLIGHTLY wrong before it

goes SERIOUSLY wrong.

Material Preparation

Hardware requirements: Wio Terminal

Connection method:



About sensor

Grove BME280 provides a precise measurement of not only barometric pressure and
temperature, but also the humidity in the environment. The air pressure can be measured in
a range from 300 hPa to 1100hPa with £1.0 hPa accuracy, while the sensor works perfectly
for temperatures between - 40°C and 85°C with an accuracy of £1°C. As for the humidity, you

can get a humidity value with an error of less than 3%.

Owing to its high accuracy in measuring the pressure, and the pressure changes with
altitude, we can calculate the altitude with +1 meter accuracy, which makes it a precise

altimeter as well.

Machine Learning Lifecycle

Please Open: https://www.edgeimpulse.com/
Data Collection

Step1: Connect Wio Terminal with Edge Impulse

Step2: Know what we are going to do

We will train and deploy a simple neural network that is able to interpret all the data as

“normal” and “abnormal” using BME280. So we need to select the sensor we are going to


https://www.edgeimpulse.com/

use — Grove-BME280, then know what kind of data we are going to sample --data of normal

state.

Select the sensor we are going to use -- Grove-BME280.

Record new data

Device ®
33:68:FF:19:11:3C v
Label Sample length (ms.)
20000
Sensor Frequency
External temperature&humidity&pressure sensor(( v 62.5Hz v

Built-in accelerometer

Built-in microphone .
Built-in light sensor
External multichannel gas(Grove-multichannel gas v2)

External pressure sensor(Grove-DPS310)
External distance sensor(Grove-TFmini)
External 6-axis accelerometer(Grove-BMI088)

External ultrasonic sensor(Grove-ultrasonic sensor)
External CO2+Temp sensor(Grove-SCD30)

This indicates that we want to record data for 20 seconds (Sample length 20000ms), use

Grove-BME280 and frequency 62.5Hz.
Know the data we are going to sample

The workshops have requirements for specific range of temperature, humidity and air

pressure because the abnormal environments will have adverse effects on their products.
We want to sample data that is in its normal state.

Step3: Sample



Record new data

Device @
33:68:FF:19:11:3C v
Label Sample length (ms.)
normal\ 20000
Sensor Frequency
External temperature&humidity&pressure sensor(( v 62.5Hz v

Start sampling

Enter the label, click "Start Sampling".

Now, we have recorded around 2 minutes of data:

Testdata | Exportdata

DATA COLLECTED
2m Os

Impulse Design

When we are done with data collection, create our impulse — set window length to 1000 ms

and windows size increase to 1000 ms.

Time series data Spectral Analysis Anomaly Detection (K-
means)

Input axes (3) Name Name

Temp, Pressure, Humidity Spectral features Anomaly detection

Window size ®

Input axes (3]
- p 3) Input features Save Impulse

1000 ms. Temp () Spectral features

Output features °

1 (Anomaly score)

Window increase ® Pressure

b Humidity

1000 ms.

Output features

1 (Anomaly score)

Frequency (Hz) ®
c

Zero-pad data

v




Feature Extraction--Spectral Analysis

The only significant tweak | made was changing the filter from low to high, which made the

features more prominent.

Parameters

Scaling

Scale axes 1

Filter

Type high v
Cut-off frequency 3

Order 6

Spectral power

FFT length 128

No. of peaks 3

Peaks threshold 0.1

Power edges 0.1,0.5, 1.0, 2.0, 5.0

Model Training--Network: Anomaly detection



Anomaly detection settings

Cluster count

10
Axes * Select suggested axes
Temp RMS Pressure Spectral Power 0.1 - 0.5

Temp Peak 1 Freq
Temp Peak 1 Height
Temp Peak 2 Freq
Temp Peak 2 Height
Temp Peak 3 Freq

Temp Peak 3 Height

Temp Spectral Power 0.1-0.5
Temp Spectral Power 0.5-1.0
Temp Spectral Power 1.0 - 2.0

Temp Spectral Power 2.0 - 5.0

Pressure Spectral Power 0.5 -
Pressure Spectral Power 1.0
Pressure Spectral Power 2.0 -

Humidity RMS

Humidity Peak 1 Freq
Humidity Peak 1 Height
Humidity Peak 2 Freq
Humidity Peak 2 Height
Humidity Peak 3 Freq

Humidity Peak 3 Height

Pressure RMS Humidity Spectral Power 0.1 - 0.5
Pressure Peak 1 Freq Humidity Spectral Power 0.5 -1.0

Pressure Peak 1 Height Humidity Spectral Power 1.0 - 2.0

Pressure Peak 2 Freq Humidity Spectral Power 2.0 - 5.0

Pressure Peak 2 Height

Pressure Peak 3 Freq

Pressure Peak 3 Height

Start training

Anomaly explorer (120 samples)

X Axis Y Axis Test data

Temp RMS N Pressure RMS ~ — No test data 2

® trained

Pressure RMS

Temp RMS

We trainin a network that creates 10 clusters around data that we have seen before and
compares incoming data against these clusters. If the distance from a cluster is too large the

sample has flagged the sample as an anomaly.



After trial and error, | found that a very low cluster count works the best for anomaly
detection, but this is very case-specific and depends on your data.

Model Optimization

Model Deployment

The next step is deployment on the device.

Step 1: After clicking on the Deployment tab, choose Arduino library and download it.

ARDUINO

Step 2: Now, the library can be installed to the Arduino IDE. Open the Arduino IDE, click
sketch -> Include Library -> Add .ZIP Library, and choose the file that you have just

downloaded.

@ Arduino File Edit Tools Help
‘00 @ Verify/Compile
Upload _ — .
Upload Using Programmer & Add .ZIP Library...
Export compiled Binary X #ES

Testino S— o
Arduino libraries
1 void setup() {

2| 7/ put your setip code Hell Show Sketch Folder Bridge
3 | Include Library Esplora

;' } Add File... Ethernet

Step 3: Open Examples -> name of your project -> static buffer.

static_buffer

minclude <Anomaly detection BME280 inferencing.h}|

[Z = e ]
]

2 B2

(%]

Your project Irary name
Step 4: Copy the following Example Code to replace the original example code:
#define ANOMALY_THRESHOLD 30

#include "Seeed_BME280.h"
#tinclude <Wire.h>



#include <Anomaly detection_BME28@_inferencing.h>
#include "TFT_eSPI.h"

TFT_eSPI tft;
BME280 bme280;

static bool debug nn = false; // Set this to true to see e.g. features generated
from the raw signal

void setup()

{
Serial.begin(115200);

tft.begin();
tft.setRotation(3);

if(!'bme280.init()){
Serial.println("Failed to initialize IMU!");
while (1);

}

else {
ei printf("IMU initialized\r\n");

}

if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != 3) {
ei_printf("ERR: EI_CLASSIFIER_RAW_SAMPLES PER_FRAME should be equal to 3
(the 3 sensor axes)\n");

return;

}
}
/**
* @brief Printf function uses vsnprintf and output using Arduino Serial
*
* @param[in] format Variable argument list
*/

void ei printf(const char *format, ...) {
static char print_buf[1024] = { 0 };

va_list args;

va_start(args, format);

int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
va_end(args);

if (r > 0) {
Serial.write(print_buf);

void loop()
{



float buffer[EI_CLASSIFIER DSP_INPUT_FRAME_SIZE] = { 0 };

for (size_t ix = ©; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix += 3) {
// Determine the next tick (and then sleep later)
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000);

buffer[ix + 0]
buffer[ix + 1]
buffer[ix + 2]

bme280.getTemperature();
bme280.getPressure()/100;
bme280.getHumidity();

delayMicroseconds(next_tick - micros());

// Turn the raw buffer in a signal which we can the classify
signal_t signal;
int err = numpy::signal_from_buffer(buffer,
EI_CLASSIFIER _DSP_INPUT_FRAME_SIZE, &signal);
if (err !=0) {
ei_printf("Failed to create signal from buffer (%d)\n", err);
return;

// Run the classifier
ei_impulse_result_t result = { 0 };

err = run_classifier(&signal, &result, debug nn);

if (err != EI_IMPULSE_OK) {
ei_printf("ERR: Failed to run classifier (%d)\n", err);
return;

// print the predictions
ei_printf("Predictions ");
ei printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
result.timing.dsp, result.timing.classification, result.timing.anomaly);
ei printf(": \n");
for (size_t ix = ©; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_printf(" %s: %.5f\n", result.classification[ix].label,
result.classification[ix].value);
}
#if EI_CLASSIFIER_HAS_ANOMALY ==
ei_printf(" anomaly score: %.3f\n", result.anomaly);

if (result.anomaly > ANOMALY_THRESHOLD)

{
tft.fillScreen(TFT_RED);
tft.setFreeFont(&FreeSansBoldObliquel2pt7b);
tft.drawString("Anomaly detected", 40, 110);
delay(1000);
tft.fillScreen(TFT_WHITE);



#endif

Serial.print("Temp: ");

Serial.print(bme280.getTemperature());

Serial.println("C");//The unit for Celsius because original arduino don't
support speical symbols

//get and print atmospheric pressure data
Serial.print("Pressure: ");
Serial.print(bme280.getPressure());
Serial.println("Pa");

//get and print humidity data
Serial.print("Humidity: ");

Serial.print(bme280.getHumidity());
Serial.println("%");

}

Step 5: Upload the code.

If the upload is successful, the message "Done uploading." will appear in the status bar.

Step 6: Try to simulate an abnormal situation and see whether the Wio Terminal alarms.

Reference

Edge Impulse Public project: https://studio.edgeimpulse.com/public/76507/Iatest






