\

A Brief Introduction to Deep Learning

Latin American Regional Workshop on SciTinyML:

Scientific Use of Machine Learning on Low-Power Devices
July 11th 2022

Outline

* Al vs ML vs DL
* The Machine Learning Paradigm

 Finding the Best Solution and Fitting a
Model

» Regression and Classification with NN
* ML Issues

" Al'vs. ML vs. DL

Artificial Intelligence

@ Any technique that enables computers
Y to mimic human intelligence. It includes
machine learning

Machine Learning

A subset of Al that includes techniques that
enable machines to improve at tasks with
experience. It includes deep learning

Deep Learning

Hl A subset of machine learning based on
neural networks that permit a machine to
train itself to perform a task.

https://docs.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning

https://docs.microsoft.com/en-us/azure/machine-learning/concept-deep-learning-vs-machine-learning

General Steps for Machine Learning

On a high level, the craft of creating machine learning (ML) processes
is comprised of several steps:

Decide on the Question

Collect and Prepare Data

Choose a Training Method
Train the Model
Evaluate the Model
Parameter Tuning

Predict

https://microsoft.github.io/ML-For-Beginners/#/1-Introduction/4-techniques-of-ML/README?id=techniques-of-machine-learning

https://microsoft.github.io/ML-For-Beginners/

We will run through this long process

Collect Preprocess Evaluate Convert Deploy Make
Data Data Optimize Model Model Inferences

This is a first encounter with ML, but many things
will be left to be experimented or developed.

The Machine
Learning
Paradigm

Explicit Coding

* Defining rules that determine
behavior of a program

» Everything is pre-calculated
and pre-determined by the
programmer

* Scenarios are limited by
program complexity

The Traditional Programming Paradigm

Answers

Traditional Programming

Consider Activity Detection

Way too
complex
to code!

The Traditional Programming Paradigm

Answers

Traditional Programming

The Machine Learning Paradigm

Answers

—

Data Machine Learning

—

Rules

Activity Detection with Machine Learning

The Machine Learning Paradigm

Two Approaches

Machine Learning

. .

I

|
Classification Clustering
t : . t Neural t

The Machine Learning Paradigm

Measure your Optimize your
accuracy Guess

VEVCERCIER

Repeat

The Machine Learning Paradigm

Labels
—

Rul
Data Machine Learning —

The Machine Learning Paradigm

Labels
b Rul
Data Machine Learning —
Data Inferences

How good is your model?

a way to measure your accuracy

Matching X to Y

X={_1IOI1121314}
Y={-3,-1,1,3,5,7}

Make a guess!

Y=3X-1

X={_1IOI1121314}
My Y ={-4,-1,2,5,8,11)

How good is the guess?

Y=3X-1

X={_1IOI1121 314}
MyY ={-4,-1,2,5,8,11}
Real Y ={-3,-1,1,3,5,7}

L et's measure it!

L et's measure it!

L et's measure it!

L et's measure it!

Houston, we have a
problem!

What if we square?
them?

Total that ()) and take
the square root ,/

sgqrt(1+1+4+9 + 16)

= sgrt(31)
= 5.57

Make another guess!
Y=2X-2

X={-1,0,1,2 3,4}
MyY ={-4,-2,0,2,4,6}
Real Y ={3,-1,1, 3,5, 7}
Diff2 ={1,1,1,1, 1}

Get the same
difference, repeat the
same process.

sqrt(1 +1+ 1+ 1+ 1)

= sgrt(5)
= 2.23

Make another guess!
Y=2X-1

X={-1,0,1,2 3,4}
MyY={-3,-1,1,3,5,7}
Real Y ={3,-1,1, 3,5, 7}
Diff2 = {0, 0, 0, 0, O}

Root-mean-square
deviation

Finding out the best solution

Trial and error approach

Loss
Function

s Parameter >

Loss
Function

Minimum of
Loss Function

Loss
Function

Loss
Function

Gradient of
value

Loss |
Function Move in Direction of Gradient

Learning Rate is size of the step to take

\

Loss
Function

End up here

Loss
Function

Get the
gradient

Loss
Function

Move in Diréction of Gradient

Loss
Function

End Up ihere

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Loss
Function

Move in Diréction of Gradient

\’

Loss
Function

Move in Diréction of Gradient

Loss
Function

Move in Diréction of Gradient

Loss
Function

Move in Diréction of Gradient

Loss
Function

Move in Diréction of Gradient

Gradient Descent for Two Parameters

A single minima
Global minima

Gradient Descent for Two Parameters

/L)(. f _,**\ " T w ?f,\\ :{\\

,, ,/;oc':t'f"“&\\\\“\\ =
= 50X

25207, ‘ ‘

\
A 7K ISR
NS 22177, 066
BN
N TN 7L
057 NS

\ ‘i)
\ o

Global Minima

Saddle Point

Artificial
Neural
Networks

A neuron

a neuron’s output is a function of its inputs (in this case only one)

X Py Y
@ —
y = t(x) = wx+b

There are only two parameters to adjust:
The weight for each input and a bias

First scenario: a regression

Linear Regression with a Single Neuron

colab.research.google.com
Regression.ipynb

v [2] import tensorflow as tf
import numpy as np
from tensorflow import keras

i N
i} ° # define a neural network with one neuron
for more information on TF functions see: https://www.tensorflow.org/api docs ’I |ayer ’I neuron
my layer = keras.layers.Dense(units=1, input shape=[1]) !
_ model = tf.keras.Sequential([my layer]))y
(1)

use stochastic gradient descent for optimization and

the mean squared error loss function Stochastic gradient descent

model.compile(optimizer="'sgd', loss='mean squared error')

define some training data (xs as inputs and ys as outputs)

xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) Inputs and outputs (labels)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)

~
J

fit the model to the data (aka train the model)

model.fit(xs, ys, epochs=500) Traln the mOdel

Linear Regression with a Single Neuron

colab.research.google.com
Regression.ipynb

Epoch 500/500 h

1/1 [] - 0s éms/step - loss: 3.4704e-05
<keras.callbacks.History at 0x7fldéccd7£10>

¥ [2] import tensorflow as tf

import numpy as np
from tensorflow import keras

Y
J

¥ [4] print(model.predict([10.0]))

i ° # define a neural network with one neuron [[18.982813]]
for more information on TF functions see: https://www.tensorflow.org/api docs
my_layer = keras.layers.Dense(units=1, input_shape=[1]) >" “<
model = tf.keras.Sequential([my_ layer]) ¥ [5] print(model.predict(xs))
use stochastic gradient descent for optimization and [[-2.9897861]
the mean squared error loss function [-0.992277]

[1.005232]
[3.0027409]
[5.00025]

model.compile(bptimizer='sgd', loss='mean_squared_error')

define some training data (xs as inputs and ys as outputs)

[6.997759 1]
Xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) >}> A‘<
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)

¥ [6] print(my_layer.get weights())
fit the model to the data (aka train the model)
model.fit(xs, ys, epochs=500)

[array([[1.997509]], dtype=float32), array([-0.992277], dtype=float32)]

Linear Regression with a Single Neuron

colab.research.google.com
Regression.ipynb

PP s e raer eeep o avses weoEeav vo
Epoch 500/500

1/1 [======================= ==] - 0s é6ms/step - loss: 3.4704e-05
<keras.callbacks.History at 0x7fldéccd7£10>

v [2] import tensorflow as tf
import numpy as np
from tensorflow import keras
v [4] print(model.predict([10.0]))

e o # define a neural network with one neuron [[18.982813]]
for more information on TF functions see: https://www.tensorflow.org/api docs
my layer = keras.layers.Dense(units=1, input shape=[1])

model = tf.keras.Sequential([my layer]) v [5] print(model.predict(xs))
use stochastic gradient descent for optimization and [[-2.9897861]
the mean squared error loss function [-0.992277]

[1.005232]
[3.0027409]

5.00025
define some training data (xs as inputs and ys as outputs) { 6.997759 }]

Xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]), dtype=float)
ys = np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)

model.compile(optimizer="'sgd', loss='mean squared error')

v [6] print(my_layer.get weights())
fit the model to the data (aka train the model)
model.fit(xs, ys, epochs=500) [array([[1.997509]], dtype=float32), array([-0.992277], dtype=float32)]

Y=2X-1 Y =1.9975X-0.9922

Not perfect,
but good enough for most cases!

X y Y Y
<o

y = t(x) = wx+b
y = 1.9975x — 0.9922

Now,
Classification

What about more than one input?

@

o
3

scale the inputs

o

y>0

weigh the inputs

More inputs?

: &K one neuron activates for cats

, \ﬁ the other activates for dogs

We can extend this example to other domains

NO OO NON~OT B WDN — O

1,0,0,0,0,0,0,0,0,0]
0,1,0,0,0,0,0,0,0,0]
0,0,1,0,0,0,0,0,0,0]
0,0,0,1,0,0,0,0,0,0]
0,0,0,0,1,0,0,0,0,0]
0,0,0,0,0,1,0,0,0,0]
0,0,0,0,0,0,1,0,0,0]
0,0,0,0,0,0,0,1,0,0]
0,0,0,0,0,0,0,0,1,0]

0,0,0,0,0,0,0,0,0, 7]

The MNIST database (Modified
National Institute of Standards and

Technology database) is a large
database of handwritten digits that
is commonly used for training
various image processing systems.

NO OO NON~OT B WDN — O

1,0,0,0,0,0,0,0,0,0]
0,1,0,0,0,0,0,0,0,0]
0,0,1,0,0,0,0,0,0,0]
0,0,0,1,0,0,0,0,0,0]
0,0,0,0,1,0,0,0,0,0]
0,0,0,0,0,1,0,0,0,0]
0,0,0,0,0,0,1,0,0,0]
0,0,0,0,0,0,0,1,0,0]
0,0,0,0,0,0,0,0,1,0]

0,0,0,0,0,0,0,0,0, 7]

60,000 Labelled Training Examples
10.000 Labelled Validation Examples

OO0 OO0 O0OO0OO«~ OO0

28
PX

28
PX

OO0 OO0 O0OO0OO«~ OO0

/84

" a NN to classify the MNIST DB

colab.research.google.com
MNIST_NN.ipynb

° import tensorflow as tf
mnist = tf.keras.datasets.fashion mnist
(training images, training labels), (val images, val labels) = mnist.load data()
training images=training images / 255.0
val images=val images / 255.0
model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(20, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
1)
model.compile(optimizer="'adam', loss='sparse categorical crossentropy', metrics=['accuracy'])
model.fit(training images, training labels, validation data=(val_images, val labels), epochs=20)

" a NN to classify the MNIST DB

colab.research.google.com
MNIST_NN.ipynb

Epoch 9/20
1875/1875 [] - 4s 2ms/step - loss: 0.3555 — accuracy: 0.8724 - val_loss: 0.4090 - val_accuracy: 0.8516
Epoch 10/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3509 - accuracy: 0.8752 - val_loss: 0.4061 - val_accuracy: 0.8537
Epoch 11/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3452 - accuracy: 0.8768 — val_loss: 0.3980 - val_accuracy: 0.8580
Epoch 12/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3398 - accuracy: 0.8783 - val_loss: 0.4052 - val_accuracy: 0.8586
Epoch 13/20
1875/1875 [1 - 4s 2ms/step - loss: ©.3355 - accuracy: 0.8798 - val_loss: 0.4160 - val_accuracy: 0.8533
Epoch 14/20
1875/1875 [1 - 4s 2ms/step — loss: ©.3332 - accuracy: 0.8812 - val_loss: 0.3913 - val_accuracy: 0.8609
Epoch 15/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3279 - accuracy: 0.8818 - val_loss: 0.3971 - val_accuracy: 0.8588
Epoch 16/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3250 - accuracy: 0.8839 - val_loss: 0.3945 - val_accuracy: 0.8597
Epoch 17/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3221 - accuracy: 0.8839 - val_loss: 0.3985 - val_accuracy: 0.8578
Epoch 18/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3184 - accuracy: 0.8853 - val_loss: 0.3988 - val_accuracy: 0.8595
Epoch 19/20
1875/1875 [1 - 4s 2ms/step - loss: 0.3158 - accuracy: 0.8857 - val_loss: 0.3984 - val_accuracy: 0.8578
Epoch 20/20
1875/1875 [] - 4s 2ms/step - loss: 0.3140 - accuracy: 0.8856 — val_loss: 0.4069 - val_accuracy: 0.8567

<keras.callbacks.History at 0x7fe50180b750>

a NN to classify the MNIST DB

colab.research.google.com
MNIST_NN.ipynb

Epoch 19/20

1875/1875 [== =] - 3s 2ms/step - loss: 0.3022 - accuracy: 0.8914 - val loss: 0.3834 - val accuracy: 0.8659
Epoch 20/20
1875/1875 [== =] - 4s 2ms/step - loss: 0.2996 - accuracy: 0.8910 - val loss: 0.3911 - val accuracy: 0.8642

<keras.callbacks.History at 0x7£033e5f5bd0>

° model.evaluate(val_images, val_labels)

classifications = model.predict(val_images)
print(classifications[0])
print(val labels[0])

313/313 | = =] - 0s lms/step - loss: 0.3911 -|accuracy: 0.8642
[5.2699960e-09 4.4460235e-10 2.9260536e-07 1.1081011e-04 -
8.1817927e-03 5.3513944e-09 5.8446459%9e-02 2.9248906e-05/9.3323141e-01]

9

Compute VC

784 -

(N

o

784 <

784 5

What second layer

neurons look for

T a S

Z
- oo~ o \
Fe

-~ i

000000

000000

784 <

What?!?

Q00000 -

A very nice introduction to NN

* 3Blue1Brown playlist on Neural Networks

* But what is a neural network?
* Chapter 1 — Deep learning
* https://youtu.be/aircAruvnKk

* Gradient descent, how neural networks learn
* Chapter 2 — Deep learning

* https://youtu.be/IHZWWFHWa-w
» What is backpropagation really doing?

« Chapter 3 — Deep learning
e https://youtu.be/llg3gGewQ5U

* (Optional) Backpropagation calculus

* Chapter 4 — Deep learning
* https://youtu.be/tleHLnjs5U8

https://youtu.be/aircAruvnKk
https://youtu.be/IHZwWFHWa-w
https://youtu.be/Ilg3gGewQ5U
https://youtu.be/tIeHLnjs5U8

and some
Issues?

The network ‘sees’ everything.
Has no context for measuring
now well it does with data it
nas never previously been
exposed to.

Data Validation Data

The network ‘sees’ a subset of
your data. You can use the rest
to measure its performance
against previously unseen
data.

Data

Validation Data

Test Data

The network ‘sees’ a subset of
your data. You can use an
unseen subset to measure its
accuracy while training
(validation), and then another
subset to measure its accuracy
after it's finished training (test).

Validation Data Test Data

Accuracy: Accuracy: Accuracy:
0.999 0.920 0.800

Validation Data Test Data

Accuracy: Accuracy: Accuracy:
0.999 0.920 0.800

Accuracy:
0.942

Validation Data

Accuracy:
0.930

Test Data

Accuracy:
0.925

Correct vs. Overfit Model

Model fitting refers to the accuracy of the ./
model's underlying function as it attempts /‘

to analyze data with which it is not ® 4
familiar. ,“

Underfitting and overfitting are common L ,
problems that degrade the quality of the ® /
model, as the model fits either not well /.
enough or too well.

Covvect VS ovevr€it wodel

https://microsoft.github.io/ML-For-Beginners/#/1-Introduction/4-techniques-of-ML/README?id=techniques-of-machine-learning

https://microsoft.github.io/ML-For-Beginners/

Prevent Overfitting and Imbalanced Data

Model Train Accuracy Test Accuracy

Test accuracy should be lower than train
accuracy, but how much less accurate?

<«— Model A is better than model B because it

A 99,9% 95%
B 87% 87%
C 99,9% 45%

has a higher test accuracy, regardless its
difference with the train accuracy.

L

Model C is a clear case of overfitting as the
train accuracy is very high but the test
accuracy isn't anywhere near as high.

This distinction is subjective, but comes from knowledge of your
problem and data, and what magnitudes of error are acceptable.

https://docs.microsoft.com/en-us/azure/machine-learning/concept-manage-ml-pitfalls

https://docs.microsoft.com/en-us/azure/machine-learning/concept-manage-ml-pitfalls

3y HARVARD

UNIVERSITY
G
== FREE [[f][leedy

| would like to thank:
Shawn Hymel and Edge Impulse,

Pete Warden and Laurence
Moroney from Google,

Prof. Vijay Janapa Reddi and Brian
Plancher from Harvard,

and the rest of the TinyMLedu team
for preparing the excellent material
on TinyML that is the basis of this
course.

https://shawnhymel.com/
https://petewarden.com/
https://laurencemoroney.com/
https://scholar.harvard.edu/vijay-janapa-reddi
https://brianplancher.com/
https://tinyml.seas.harvard.edu/

Thank you!

Prof. Diego Méndez Chaves, Ph.D

Associate Professor - Electronics Engineering Department
Director of the Master Program in Internet of Things
Director of the Master Program in Electronics Engineering
email: diego-mendez@javeriana.edu.co

Website: www.javeriana.edu.co/blogs/diego-mendez/

