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Close The Loop



ML Ops



MLOps = ML Workflow + Automation
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MLOps Tools

End-to-end
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TensorFlow Extended
(TFX)
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Edge Impulse Workflow

Co-Optimization & Cross-Stack Collaboration

Data
Collection

Data
Analysis

DSP
Pipeline

ML Design
& Training

Conversion & 
Compilation

IoT Device
Management

Production
Monitoring

Optimization
& Compression

Estimation
& Evaluation

Data Collection Monitoring

Raw Data 
Store

Metadata
& Labels

Feature
Store

Model
Registry

Firmware
Versions

Hardware Heterogeneity 

Software Fragmentation 

AutoML

C
ha

lle
ng

es
A

dd
re

ss
ed

Ed
ge

 Im
pu

ls
e

W
or

kf
lo

w

Active Learning

Development & Deployment



Basic features of MLOps tool

Way to version 
modelsWay to train modelsWay to manage and 

process data

Way to evaluate and 
compare models

Way to deploy 
models



The MLOps Process
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Continuous Monitoring Example
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Concept Drift

Decision boundary fit to 
training data



Concept Drift

Decision boundary fit to 
training data

Concept drift,
detrimental performance impact



Li-ion Battery Example
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Model Drift



Trigger Retraining
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Connectivity Trade-Off
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Connectivity Trade-Off



You’re always doing MLOps,
so make sure you do it well.




