SciTinyML — ICTP Workshop

Scientific Use of Machine Learning on Low Power Devices

Machine Learning Sensors




Applications of Machine Learning

[©
=







No Good Data Left Behind

5 Quintillion <1%

bytes of data produced of unstructured data is
every day by loT analyzed or used at all

Source: Harvard Business Review, What's Your Data Strategy?, April 18, 2017
Cisco, Internet of Things (loT) Data Continues to Explode Exponentially. Who Is
Using That Data and How?, Feb 5, 2018



https://hbr.org/webinar/2017/04/whats-your-data-strategy
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
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How do we architect future Tiny Machine Learning (tinyML) sensors
efficiently, and robustly into the embedded ecosystem?



Machine Learning Sensors
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An ML sensor is a self-contained system that
utilizes on-device machine learning to extract
useful information by observing some complex set
of phenomena in the physical world and reports it
through a simple interface to a wider system.

"y



Machine Learning Sensors

10



Machine Learning Sensors

h o

Physical

Processor
Sensor

11



Machine Learning Sensors

LLLLLL

-

b7 o . |

-oo)-
=0

TTTTTI

TrrrnT

Machine Learning
(ML) Sensor

TTTTTT

Processor

D

Cloud

Sensor 2.0



ML Sensors - Guiding Set of Principles

1.  We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors; not
everyone should be required to be a developer or an engineer to leverage ML sensors into their ecosystem.

2. The ML sensor’s and defined by its input-output behavior
instead of exposing the underlying hardware and software mechanisms that support ML model execution.

3. An ML sensor’s implementation must be clean and complexity-free. Features such as reusability, software
updates, and networking must be thought through to ensure data privacy and secure execution.

4. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet all
the relevant information to supplement the traditional information available for hardware sensors.

5. We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model, and
hardware transparency where possible, without necessarily relinquishing any claim to intellectual property.
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ML Sensors - Guiding Set of Principles

1. We need to raise the level of abstraction to enable ease of use for scalable
deployment of ML sensors; not everyone should be required to be a
developer or an engineer to leverage ML sensors into their ecosystem.
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ML Sensors - Guiding Set of Principles

1.  We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors; not
everyone should be required to be a developer or an engineer to leverage ML sensors into their ecosystem.
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ML Sensors - Guiding Set of Principles

1.  We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors; not
everyone should be required to be a developer or an engineer to leverage ML sensors into their ecosystem.
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ML Sensors - Guiding Set of Principles

2. The ML sensor’s and defined by
its input-output behavior instead of exposing the underlying hardware and
software mechanisms that support ML model execution.
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ML Sensors - Guiding Set of Principles

2. The ML sensor’s and defined by its input-output behavior instead
of exposing the underlying hardware and software mechanisms that support ML model execution.
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ML Sensors - Guiding Set of Principles

3. An ML sensor’s implementation must be clean and complexity-free.
Features such as reusability, software updates, and networking must be
thought through to ensure data privacy and secure execution.
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ML Sensors - Guiding Set of Principles

3. An ML sensor’s implementation must be clean and complexity-free. Features such as reusability, software

updates, and networking must be thought through to ensure data privacy and secure execution.
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We need to define or rely on standard interfaces
and mechanisms for communication with sensors.
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ML Sensors - Guiding Set of Principles

3. An ML sensor’s implementation must be clean and complexity-free. Features such as reusability, software
updates, and networking must be thought through to ensure data privacy and secure execution.
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ML Sensors - Guiding Set of Principles

4. ML sensors must be transparent, indicating in a publicly and freely
accessible ML sensor datasheet all the relevant information to supplement
the traditional information available for hardware sensors.
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0

JLLLLL :|| ":
d| mcu =
Illolll g I:> j t I:>
— -
TTTTTT
Machine Learning Processor Cloud

(ML) Sensor

4. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet all
the relevant information to supplement the traditional information available for hardware sensors.
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ML Sensors - Guiding Set of Principles
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4. ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet all
the relevant information to supplement the traditional information available for hardware sensors.
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“... designing a usable security and privacy
label for smart devices to help consumers
make informed choices about Internet of
Things device purchases and encourage
manufacturers to disclose their privacy and
security practices.” — loT Security & Privacy
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E.g.

RoHS

2002/95/EC

ML sensors ought to be tested by 3rd party certification
agencies or bodies that specialize in AI/ML technologies.
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| Environmental Impact: Full report can be found here.

. Environmental Impact

We must quantify the effects of ML sensors in
terms of carbon emissions. Carbon emissions
have two sources: (1) operational energy
consumption, and (2) hardware manufacturing
and infrastructure. The former has been
decreasing thanks to software and hardware
innovations but the total footprint is growing.
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Figure 4. A breakdown of different TinyML system footprints highlights that the footprint is largely attributable to the
embodied footprint of the power supply, onboard sensors, and transportation. Note that actuator and connectivity blocks
from Pirson and Bol [21] are encapsulated in “Other" and “Processing", respectively, while “Product Use" captures the
operational footprint. The carbon footprint of TinyML Systems was also compared with Apple’s Series 7 Watch [12] and
16-inch MacBook Pro [11] as baseline references. For more details and to compute the footprint of your own TinyML system
see github.com/harvard-edge/TinyML-Footprint.



ML Sensors - Guiding Set of Principles

5. We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model, and
hardware transparency where possible, without necessarily relinquishing any claim to intellectual property.
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Machine Learning Sensors

An ML sensor is a self-contained system that utilizes on-device
machine learning to extract useful information by observing some
complex set of phenomena in the physical world and reports it
through a simple interface to a wider system.

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current
instantiations of embedded ML suffer from complex integration, lack of modularity, and privacy and security concerns from data
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Machine Learning Sensors

An ML sensor is a self-contained system that utilizes on-device

machine learning to extract useful information by observing some
complex set of phenomena in the physical world and reports:it
through a simple interface to a wider system.

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current
instantiations of embedded ML suffer from complex integration, lack of modularity, and privacy and security concerns from data
movement. ML sensors provide a more data-centric paradigm for embedding sensor intelligence on edge devices to combat these
challenges.

Our vision for “sensor 2.0" entails segregating sensor input data and ML processing from the wider system at the hardware level
and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use
ML sensor device. ML sensors increase privacy and accuracy while making it easier for system builders to integrate ML into their
products as a simple component.

To learn more about our approach, check out our whitepaper on arXiv.
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Interface Standards Ethics
What universal interface is needed for ML What standards need to be in place for ML What ethical considerations are needed for
Sensors? Sensors? ML Sensors?

Call for Working Group Members

We are actively growing our working group. If you would like to be a part of it please email us at:
ml-sensors@googlegroups.com!

Example ML Sensor Datasheet

This illustrative example datasheet highlighting the various sections of an ML Sensor datasheet. On the top, we have the items
currently found in standard datasheets: the description, features, use cases, diagrams and form factor, hardware characteristics,
and communication specification and pinout. On the bottom, we have the new items that need to be included in an ML sensor
datasheet: the ML model characteristics, dataset nutrition label, environmental impact analysis, and end-to-end performance
analysis. While we compressed this datasheet into a one-page illustrative example by combining features and data from a mixture
of sources, on a real datasheet, we assume each of these sections would be longer and include additional explanatory text to
increase the transparency of the device to end-users. Interested users can find the most up-to-date version of the datasheet
online at https://github.com/harvard-edge/ML-Sensors.

___________________________ e o e

PA1 Person Detection: Module

1
Description: The PA1 Person Detection Module enables youto | |
quickly and easily add smarts to your loT deployment to 11
monitor and detect for humans. You can use this module : :
indoors and outdoors to understand where and when humans |
arrive at your deployment site. 1l
Features: 2 :
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Recap of ML Sensors

We need to raise the level of abstraction to enable ease of use for scalable deployment of ML sensors; not
everyone should be required to be a developer or an engineer to leverage ML sensors into their ecosystem.

The ML sensor’s and defined by its input-output behavior
instead of exposing the underlying hardware and software mechanisms that support ML model execution.

An ML sensor’s implementation must be clean and complexity-free. Features such as reusability, software
updates, and networking must be thought through to ensure data privacy and secure execution.

ML sensors must be transparent, indicating in a publicly and freely accessible ML sensor datasheet all
the relevant information to supplement the traditional information available for hardware sensors.

We as a community should aim to foster an open ML sensors ecosystem by maximizing data, model, and
hardware transparency where possible, without necessarily relinquishing any claim to intellectual property.
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ABSTRACT
Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications.
Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity,
and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for
embedding sensor intelligence on edge devices to combat these challenges. Our vision for “sensor 2.0 entails
segregating sensor input data and ML processing from the wider system at the hardware level and providing a
thin interface that mimics traditional sensors in functi This ion leads to a modular and casy-to-use
ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the
software stack of the onan system and how the modularity of ML sensors
alleviates these problems. ML sensors increase privacy and accuracy while making it casier for system builders to
integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an
illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0.

1 INTRODUCTION

Since the advent of AlexNet [43], deep neural networks have
proven to be robust solutions to many challenges that involve
making sense of data from the physical world. Machine
learning (ML) models can now run on low-cost, low-power
hardware capable of deployment as part of an embedded
device. Processing data close to the sensor on an embedded
device allows for an expansive new variety of always-on
ML use-cases that preserve bandwudlh latency, and energy
while i ining data pri-
vacy. Thns cnmgmg field, commonly referred to as embed-
ded ML or tiny machine learning (TinyML) [73, 18, 39, 59],
is paving the way for a prosperous new array of use-cases,
from personalized health initiatives to improving manufac-
turing productivity and everything in-between.

However, the current practice for combining inference and
sensing is cumbersome and raises the barrier of entry to
embedded ML. At present, the general design practice is to
design or leverage a board with decoupled sensors and com-
pute (in the form of a microcontroller or DSP), and for the
developer to figure out how to run ML on these embedded
platforms. The developer is expected to train and optimize
ML models and fit them within the resource constraints of
the embedded device. Once an acceptable prototype imple-
mentation is developed, the model is integrated with the rest
of the software on the device. Finally, the widget is tethered
to the device under test to run inference. The current ap-
proach is slow, manual, energy-inefficient, and error-prone.

h(«lcv

Physical
Sensor

Cloud

Figure 1. The Sensor 1.0 paradigm tightly couples the ML model
with the application processor and logic, making it difficult to
provide hard guarantees about the ML sensor's ultimate behavior.

Machine Leaming
(ML) Sensor

Figure 2. Our proposed Sensor 2.0 paradigm. The ML model is
tightly coupled with the physical sensor, separate from the applica-
tion processor, and comes with an ML sensor datasheet that makes
its behavior transparent to the system integrators and developers.

It requires a sophisticated understanding of ML and the in-
tricacies of ML model implementations to optimize and fit
a model within the constraints of the embedded device.




