

Sustainable & Responsible TinyML

Brian Plancher Barnard College, Columbia University <u>brianplancher.com</u>

How can TinyML support **Responsible AI**?

How can TinyML support **Responsible AI**?

Accessibility / Education

Sustainability / Conservation

Accessibility / Education

Promoting Accessibility / Education

Full Courses

Organization	Course Name	Date of Course	Target Audience	Language of Instruction	Language of Materials	Links
₩@ <u>X</u>	edX tinyML Specialization by Harvard University	Launched 2020-2022	Everyone	Inglish	English	Course 1-3 Website Course 4 Website All Materials All Collabo Archano Library
= 0	Embedded Machine Learning on Coursera by Edge Impulse	Launched 2021-2022	Everyone	English	English	Course 1 Course 2 All Materials
*	ESE3400: Tiny Machine Learning by the University of Pennsylvania	Fall 2022	Undergraduate and Graduate Students	English	English.	Website and Materials
1117	MIT 6.5965 TinyML and Efficient Deep Learning	Fall 3022	Grachuate Students	English	English	Website Materials
æ	UNIFEI IESTI01 TirryML-Machine Learning for Embedding Devices	Jan 2021 - Present	Undergraduate Students	Portuguese	English	2022.1 Welasite and Materials 2021.2 Website and Materials 2021.1 Website and Materials
W	Hervard CS249r Tiny Machine Learning	Sept 2020 - Present	Graduate Students	English	English	2022 Website and Assistements 2020 Website 2020 Assistments

Workshops

Lead Organizers	Workshop Name	Date of Workshop	Target Audience	Language of Instruction	Language of Materials	Links
() () () ()	Moracco AJ Summer School 2023	.My 2023	Everyone	English	English	Website Tim/ML Part 1 Tim/ML Part 2
	Edge/HLUP 2023 Workshop on Widening Access to TinyML Network by Establishing Best Practices in Education	ikaly 2023	Everyone	English	English	Website and Materials
@₩® ≣	SciTinyML 2023 Scientific Use of Machine Learning on Low- Power Devices	April 2023	Everyone	Inglish	English	Website and Materials
#0	TinyML at AAU A Workshop at Addis Ababa University	March 2023	Dveryone	English	Inglin	Materials
8	Artificial Intelligence and its Integration with Everyday Life	November	Everyone	Spanish	Spanish	Materials

TinyMLedu.org

Machine Learning Systems

DOCIMP MATTER Preface Dedication Acknowledizements Contributors Copyright About the Book MABI 1 kitrochertion 2 Embedded Systems 3 Deep Learning Primer 6 Data Engineering 2 Al Fremenerika B Al Training 9 Effcent Al 10 Model Optimizations

Machine Learning Systems

with TinyML

Machine Learning Systems with TinyML offers readers an entry point to understand comprehensive machine learning systems by grounding concepts in accessible TinyMI, applications. As resourceconstrained edge computing week rapid expansion, the ability to construct efficient ML pipelines grows crucial. This book aims to demystify the process of developing complete ML systems suitable for deployment - spanning key phases like data collection, model design, optimization, acceleration, security hardening, and integration. The text touches on the full broadth of concepts relevant to general ML implicering across industries and applications through the lens of Tim/ML. Readers will been basic principles around designing ML modul architectures, hardware-aware training strategies, performant inference optimization, benchmarking methodologies and more. Additionally, crucial systems considerations in areas like reliability, privacy, responsible Al, and solution validation are also explored in depth. In summary, the book strives to equip newcomers and professionata alike with integrated knowledge covering full stack ML system development, using easily accessible TinyML applications as the vehicle to impart universal concepts required to unlock production ML

O LT

Table of controls

Prefece Why We Wrote This Bork What You'll Next to Knew Book Conventions Wart-to Help Out? Get in Touch O Link this pape Report an input

View.totattet

Foundations of TinyML

Examples on the basis of markine learning and and added wyters, such as invariabless. this together will introduce you to the languager of fireML

Applications Of TinyML

Get the opportunity to see Treyfull, in practice Asserts to designant Vy Tensold-Souri Like But The full are entropies of Tev-M, applications, induscentrollars on that long can write the and learn first herd from to train these models code and deploy your readel to your eary swi for first applications such as longwood sporting. situal wake within and gesture recognition.

Deploying TinyML

This course introduces learning to Machine. learning Operations (MUOpo) (feesals the lens of YauMI. How Mathine Loansaut Learners. inplore best practices to deploy monitor, and Tory microcostroller, Before you know it, year's materials (kny) Machina Learning readels in its implementing an active Tright's application. production at scale.

Introduction to

Learning

Embedded Machine

This course will give you a broad overview of how maphene learning works, have to have

Computer Vision with Embedded Machine Learning

This course, offered by a partnership briving Edge impulse, OpenAM, Sweet Studio, and the flimibili Southelion, will give una en and extending of two chap have no with minural networks can be used to classify images and detect objects is images and videos

estworks to re-incontrollers at also the Filter

6

Promoting Accessibility / Education

Low Resource Requirements

Interdisciplinary Focus and Applied Learning

Low Power Low Cost Low Connectivity

Software and Hardware Fragmentation

250 Billion *MCUs today*

² Affordability Barriers and Localization Roadblocks

Language and Local Relevance

10

² Affordability Barriers and Localization Roadblocks

Educator Readiness and Research Incentives

3

Workshop on Widening Access to TinyML Network by Establishing Best Practices in Education

Workshop on Widening Access to TinyML Network by Establishing Best Practices in Education | (smr 3851)

3 - 7 July 2023 An ICTP Meeting Trieste, Italy

Towards a Modular Curriculum

Towards a Modular Curriculum

Calls to Action

3

Assessing Our Educational Programs

6

Improving Accessibility of Hardware

² Maintaining Open-Source Software and Courseware

Growing a Research Community

Embedded ML Model and Data Zoo

Calls to Action

3

Assessing Our Educational Programs

Improving Accessibility of Hardware

² Maintaining Open-Source Software and Courseware

Growing a Research Community

Embedded ML Model and Data Zoo

Increased Outreach and Diversity Efforts

Underrepresentation of ^{opyright} (c) 2024 TinyMLedu. All rights reserved. CC BY-NC-SA 4.0

Calls to Action

ieeexplore.ieee.org/document/10474552

TABLE 1. FAR for CS and engineering subfields based on prior work andincluding our result for robotics [1], [3], [4] (data from 2017 to 2023).

FIELD	FAR (%)
CS education	42
Human-computer interaction	26
CS overall average	16–26
Knowledge systems	19
Software engineering and languages	14
Artificial intelligence	12
Robotics	11–12 (our analysis)
Computer systems	10
Theory and algorithms	8

As has been noted in related works, this kind of methodology has many flaws and does not take into account much of the nuance in gender, including issues of bias, misperception, and nonbinary identities [7], [8]. However, we hope that this initial study will help add to the robotics community's understanding of the current state of gender diversity and, at a minimum, provide directionally correct data to help with future diversity, equity, and inclusion efforts.

Sustainability / Conservation

Promoting Sustainability / Conservation

باعة∭ذوب ر المحمود # عليم ALARTANSATN	How TinyML Can be Leveraged to Solve Environmental Problems: A Survey) Hatim	Bamoumen, Anas Temouden, Nabil Benamar, Yousra Chtouki	Innovation and Intelligence for Informatics, Computing, and Technologies	<u>u.org</u>
	Design and Develop	ment of a			
€ €∕	B States	ls TinyMl Assessir	L Sustainable? ng the Environmental Shvetank Prakash, Matthe	w Stewart, Colby Banbury, Ma	ark Communications of
٢	<u>\$</u>	Impacts on Micro	of Machine Learning Mazumder, Pete Warden, E controllers	Brian Plancher, Vijay Janapa	Reddi the ACM (CACM)
	Smart Buildings: W Leakage Detection TinyML	'ater Using	Othmane Atanane, Asmaa Mourhir, Nabil Benamar, Marco Zennaro	Sensors	
E CTP	Classifying Mosquit Wingbeat Sound Using TinyML	o Moez /	Altayeb, Marco Zennaro, Marcelo Rovai	ACM Conference on Information Technology for Social Good	

Copyright (c) 2024 TinyMLedu.

Zero Hunger & Good Health and Well-Being (SDG #2 & #3)

Credit: PlantVillage Nuru

Nuru, an ML app more accurate than humans at detecting plant diseases. Increased a farmer's sales by 55% & **yields by 146%**.

Credit: Crop Angel Ltd

Tiny drones can provide targeted pesticide applications that **reduce use to 0.1%** of conventional blanket spraying.

Credit: Sinhyu/Getty Images

Using Edge Impulse, a system was prototyped to identify mosquitoes by wing beats sounds with **88.3% accuracy**.

Life on Land & Below Water (SDG #14 & #15)

Credit: Rainforest Connection

Rainforest Connection uses recycled smartphones for solar-powered listening devices to warn of deforestation efforts

Credit: RESOLVE and Bivash Pandav

RESOLVE's AI camera transmits notifications of elephant detection and can **run for more than 1.5 years** on a single battery.

Credit: Tim Cole

To prevent collisions with whales in busy waterways, Google deployed a TinyML model on hydrophones to alert ships.

Climate Action (SDG #13)

Credit: Ribbit Network

Ribbit Network is **crowdsourcing world's largest greenhouse gas emissions dataset** through distributed intelligent sensors

Credit: Wyss Institute at Harvard University

TinyML can help provide intelligence to **tiny robots like the Robobee** that can be used as artificial pollinators.

Credit: Google Nest

Smart HVAC systems show a 20-40% reduction in building energy usage.

How might you be able to quantify the environmental impact of an MCU?

Energy Consumption During Production Dominates the Small Footprint

25

Real TinyML Systems are more than just an MCU!

Real TinyML Systems are more than just an MCU!

- Color, brightness, proximity and gesture sensor
- Digital microphone
- Motion, vibration and orientation sensor
- Temperature, humidity and pressure sensor
- Arm Cortex-M4 microcontroller and BLE module

Building Representative Systems

Cost Level	High Cost	Medium Cost	Low Cost
Application	Image (Classification	Keyword Spotting
Size	Large	Compact	Compact

Building Representative Systems

harvard-edge.github.io/TinyML-Footprint/

TinyML CO₂ Footprint Calculator

Application Presets			
View Controltation	Annexy Delector Adamsele		
yML 🗘			
ML Training			
Chennetirek Outdikp G70bi	storadow 1 Linnig Cittle	Cuatori Entervision	
		Custom ML	Training kg GO2e
Casing			
889 200299889 200 00436 0029	0.95.400g/Sixol K0g 0.21 kg C02k	485700;/9sax.00g 8894;009	Cutton Entroduc
		Custom Ca	sing kg GO26
Processing			
MGLE Simon D.DE kg G.DEv	MCD 10 test". U théy Cros	MCU Sf.mm ⁴ 025 kg c due	Cuntern diver value
		Custom Pro	cessing kg CO2e
PCB			
rttSL-43 eynald 00.12 kg CTDN	PER-Organish 010 kg CEDe	1012-016rge 0.223g0038	Conferen Termevillar
		Custam PC	B lig CO2e

TinyML Systems in Context

5x to 38x Savings over a 3-year lifespan!

What if we scale to 250bn devices?

There are around **250bn MCUs** deployed today and around **15bn IoT** devices

IoT Device Growth							
	~15 Billion	>50 Billion	>100 billion	>250 Billion	>1 Trillion		
Linear	2023	2041	2067	2144	2531		
Exponential	2023	2032	2036	2043	2053		

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

What if we scale to 250bn devices?

Limitations and Areas for Future Study

What about the net impact of factors **beyond carbon**?

What about **Jevons' Paradox**?

What about the **human costs**?

How can **emerging technologies** help?

Privacy / Security

What is a Machine Learning Sensor?

We suggest transparency as a core value

Datasheets for Machine Learning Sensors: Towards Transparency, Auditability, and Responsibility for Intelligent Sensing

MATTHEW STEWART, Harvard University, PETE WARDEN, Stanford University, Useful Sensors, YASMINE OMRI, Harvard University, SHVETANK PRAKASH, Harvard University, JOAO SANTOS, Harvard University, SHAWN HYMEL, Edge Impulse, BENJAMIN BROWN, Harvard University, JIM MACARTHUR, Harvard University, NAT JEFFRIES, Useful Sensors, SACHIN KATTI, Stanford University, BRIAN PLANCHER, Barnard College, Columbia University, VIJAY JANAPA REDDI, Harvard University,

arxiv.org/abs/2306.08848

mlsensors.org Compliance Description, Features and Use case Standard Sensor **Diagram and** Datasheet Form Factor Components (Section 3.1) Communication Specification Hardware and Pinout Characteristics **IoT Datasheet IoT Privacy and Security** Components (Section 3.2) Al Datasheet Model Dataset Components Characteristics Characteristics (Section 3.3) Additional ML Sensor End-to-End Environmental Performance Datasheet Impact Analysis Components (Section 3.4)

Materiality and Risk in the Age of Pervasive Al Sensors

arxiv.org/abs/2402.11183

Brian Plancher Barnard College, Columbia University <u>brianplancher.com</u>

Evolution of Sensors...

... and their impact on Responsible Al

How can TinyML support **Responsible AI**?

