

# **Tiny Robots:** Edge Computational Challenges and Opportunities



Brian Plancher Barnard College, Columbia University <u>brianplancher.com</u>





## So what is Robotics?









## Robotics is a **BIG** space



### Robots can do amazing things...







### Robots can do amazing things...



## ... but they still have a long way to go!



## Especially at small scales!



## Especially at small scales!



Neuman, Sabrina M., et al. "Tiny robot learning: Challenges and directions for machine learning in resource-constrained robots." 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2022.

## Especially at small scales!



Neuman, Sabrina M., et al. "Tiny robot learning: Challenges and directions for machine learning in resource-constrained robots." 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2022.

**Tiny Robots:** Edge Computational Challenges and Opportunities



REX

# **TinyMPC**: Enabling state-of-the-art classical algorithms on Tiny Robots

Khai Nguyen\*, Sam Schoedel\*, Anoushka Alavilli, Elakhya Nedumaran, Brian Plancher, Zachary Manchester

|                 | Micro Platforms                  |                                     | Tiny Platforms                        |                                               |                                                 |                                                       | Full-Scale Platforms                                                                   |                                                                              |
|-----------------|----------------------------------|-------------------------------------|---------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                 | Robobee                          | HAMR-F                              | Crazyflie2.1                          | DeepPicar<br>Micro                            | PIXHAWK<br>PX4                                  | Petoi<br>Bittle                                       | Snapdragon<br>Flight                                                                   | Unitree<br>Go1edu                                                            |
| Processor       | ATtiny20<br>4-8 MHz<br>8-bit MCU | ATmega1284RF2<br>16MHz<br>8-bit MUC | STM32F405<br>168 MHz<br>32-bit M4 MCU | RP2040<br>133 MHz Dual-Core<br>32-bit M0+ MCU | STM32F765<br>216 MHz Dual-Core<br>32-bit M7 MCU | ESP32-WROOM-32D<br>240MHz Dual-Core<br>32-bit LX7 MCU | Qualcomm Snapdragon 801<br>2.15 GHz Quad-Core<br>32-bit CPU<br>450 MHz 32-pipeline GPU | Jetson Nano (x3)<br>1.43 GHz Quad-Core<br>64-bit CPU<br>921 MHz 128-core GPU |
| RAM             | 128 B                            | 16 kB                               | 196 kB                                | 264 kB                                        | 512 kB                                          | 512 kB                                                | 2 GB                                                                                   | 4 GB (x3)                                                                    |
| Flash           | 2 kB                             | 128 kB                              | 1 MB                                  | 2 MB                                          | 2 MB                                            | 16 MB                                                 | 32 GB                                                                                  | 64-256 GB (via SD card<br>x3)                                                |
| Processor Power | 0.015 W                          | 0.045 W (with RF)                   | 0.15 W                                | 0.15 W                                        | 0.5 W                                           | 0.5-1 W                                               | 3-10 W                                                                                 | 5-10 W (x3)                                                                  |

# **TinyMPC**: Enabling state-of-the-art classical algorithms on Tiny Robots

Trade generality for speed and low-memory utilization

$$K_{k} = (R + B^{\mathsf{T}} P_{k+1} B)^{-1} (B^{\mathsf{T}} P_{k+1} A) \longrightarrow K_{\infty}$$

$$d_{k} = (R + B^{\mathsf{T}} P_{k+1} B)^{-1} (B^{\mathsf{T}} p_{k+1} + r_{k})$$

$$P_{k} = Q + K_{k}^{\mathsf{T}} R K_{k} + (A - B K_{k})^{\mathsf{T}} P_{k+1} (A - B K_{k}) \longrightarrow P_{\infty}$$

$$p_{k} = q_{k} + (A - B K_{k})^{\mathsf{T}} (p_{k+1} - P_{k+1} B d_{k}) + K_{k}^{\mathsf{T}} (R d_{k} - r_{k})$$

Offline vs. Online  

$$C_{1} = (R + B^{T} P_{\infty} B)^{-1}$$

$$C_{2} = (A - BK_{\infty})^{T}$$

$$d_{k} = C_{1} (B^{T} p_{k+1} + r_{k})$$

$$p_{k} = q_{k} + C_{2} p_{k+1} - K_{\infty}^{T} r_{k}$$

## **TinyMPC:** Enabling state-of-the-art classical algorithms on Tiny Robots



# **TinyMPC**: Enabling state-of-the-art classical algorithms on Tiny Robots



# **TinyMPC**: Enabling state-of-the-art classical algorithms on Tiny Robots



**Tiny Robots:** Edge Computational Challenges and Opportunities







### Sniffy Bug: A Fully Autonomous Swarm of Gas-Seeking Nano Quadcopters in Cluttered Environments

Bardienus P. Duisterhof<sup>1</sup> Shushuai Li<sup>1</sup> Javier Burgués<sup>2</sup> Vijay Janapa Reddi<sup>3</sup> Guido C.H.E. de Croon<sup>1</sup>

### Tiny Robot Learning (tinyRL) for Source Seeking on a Nano Quadcopter

Bardienus P. Duisterhof<sup>1,3</sup> Srivatsan Krishnan<sup>1</sup> Jonathan J. Cruz<sup>1</sup> Colby R. Banbury<sup>1</sup> William Fu<sup>1</sup> Aleksandra Faust<sup>2</sup> Guido C. H. E. de Croon<sup>3</sup> Vijay Janapa Reddi<sup>1</sup>





A. Paulson ineering iences



Delft University of Technology

# Sniffy Bug System design

Requirements:

- Obstacle avoidance
- Odometry
- Gas sensing
- Relative ranging
- Communication

Payload:

- Flow deck
- Multiranger deck
- Custom gas/UWB PCB



# Sniffy Bug Algorithm and Results

#### **Particle Swarm Optimization**





# tinyRL System design

#### BitCraze CrazyFlie 2.1

- ARM Cortex-M4
- CPU: 1-core & 168 MHz
- RAM: 196 kB
- Storage: 1MB
- Available RAM: 33 kB
- Weight: 33 grams

# Training done in simulation.





# tinyRL Inference Implementation

- Obstacle avoidance requires low-latency inference.
- Libraries considered:
  - **TensorFlow Lite**, not fast enough.
  - **uTensor**, ran out of memory.
- Therefore, developed a custom lightweight C inference library!
- Result: capable of inference at up to 100Hz, higher than the sensor polling rate!



# tinyRL Flight Test Results

- The deep-RL model reaches a **94%** success rate.
- The FSM Baseline reaches a **75%** success rate.
- Between obstacle densities, our policy found the source
   55%-70% faster than the baseline.
- The results show that our policy generalizes far beyond what was presented in simulation!



# tinyRL Flight Test Results





**Tiny Robots:** Edge Computational Challenges and Opportunities



#### TyBox: An Automatic Design and Code Generation Toolbox for TinyML Incremental On-Device Learning

MASSIMO PAVAN and EUGENIU OSTROVAN, Politecnico di Milano, Italy ARMANDO CALTABIANO, Truesense s.r.l., Italy MANUEL ROVERI, Politecnico di Milano, Italy

On-Device Learning is Coming to MCUs near you!

#### TinyProp - Adaptive Sparse Backpropagation for Efficient TinyML On-device Learning

Marcus Rueb Software Solutions / Artificial intelligence Hahn-Schickard Villingen-Schwenningen, Germany Marcus.rueb@hahn-schickard.de

Daniel Mueller-Gritschneder Electronic Design Automation TUM, Technical University Munich Munich, Germany daniel.mueller@tum.de Daniel Maier Software Solutions / Artificial intelligence Hahn-Schickard Villingen-Schwenningen, Germany Daniel.Maier@hahn-schickard.de

#### Axel Sikora

EMI University of Applied Sciences Offenburg Offenburg, Germany axel.sikora@hs-offenburg.de

TyBox: An Automatic Design and Code Generation Toolbox for TinyML Incremental On-Device Learning

MASSIMO PAVAN and EUGENIU OSTROVAN, Politecnico di Milano, Italy ARMANDO CALTABIANO, Truesense s.r.l., Italy MANUEL ROVERI, Politecnico di Milano, Italy



### TyBox: An Automatic Design and Code Generation Toolbox for TinyML Incremental On-Device Learning

MASSIMO PAVAN and EUGENIU OSTROVAN, Politecnico di Milano, Italy ARMANDO CALTABIANO, Truesense s.r.l., Italy MANUEL ROVERI, Politecnico di Milano, Italy



Fig. 5. The classification accuracy on the abrupt concept drift learning experiment for the image multi-class classification setting.

#### 5. Sparse back Propagation

(Top k = 2)



| Fradient | Hidden | Gradient  |
|----------|--------|-----------|
| of input | layer  | of output |

#### TinyProp - Adaptive Sparse Backpropagation for Efficient TinyML On-device Learning

Marcus Rueb Software Solutions / Artificial intelligence Hahn-Schickard Villingen-Schwenningen, Germany Marcus.rueb@hahn-schickard.de

Daniel Mueller-Gritschneder Electronic Design Automation TUM, Technical University Munich Munich, Germany daniel.mueller@tum.de Daniel Maier Software Solutions / Artificial intelligence Hahn-Schickard Villingen-Schwenningen, Germany Daniel.Maier@hahn-schickard.de

Axel Sikora EMI University of Applied Sciences Offenburg Offenburg, Germany axel.sikora@hs-offenburg.de

| MNIST fine-tuning       | Baseline | top-k 6500 | top-k 12000 | top-k 17000 | top-k 30000 | top-k 66000 | TinyProp |
|-------------------------|----------|------------|-------------|-------------|-------------|-------------|----------|
| Accuracy (%)            | 96.4     | 85.2       | 85.9        | 86.0        | 89.9        | 91.9        | 96.1     |
| Back propagation Ratio  | 1        | 0.1        | 0.15        | 0.2         | 0.33        | 0.66        | 0.07     |
| Runtime ESP32 per Epoch | 150.15s  | 25.024s    | 30.03s      | 37.51s      | 50s         | 100.1s      | 18,1s    |
| Acceleration            | 1x       | 6x         | 5x          | 4x          | 3x          | 1.5x        | 8,3x     |

**Tiny Robots:** Edge Computational Challenges and Opportunities



# Tiny Robots: Edge Computational Challenges and Opportunities

I'm Optimistic that TinyML can help Overcome SWaP Constraints for Robotics Size, Weight, and Power

### Initial Results are Already Positive!



Brian Plancher Barnard College, Columbia University <u>brianplancher.com</u>





